mojoshader_parser_hlsl.lemon
author Ryan C. Gordon <icculus@icculus.org>
Mon, 25 Oct 2010 16:47:26 -0400
changeset 927 0e8b7f053a45
parent 926 8ac335735b37
child 928 c9b0235e9d23
permissions -rw-r--r--
Reworked AST to not use AST_OP_COMMA for function/constructor argument lists.

/**
 * MojoShader; generate shader programs from bytecode of compiled
 *  Direct3D shaders.
 *
 * Please see the file LICENSE.txt in the source's root directory.
 *
 *  This file written by Ryan C. Gordon.
 */

// This is a Lemon Parser grammar for HLSL. It is based on an ANSI C YACC
//  grammar by Jeff Lee: http://www.lysator.liu.se/c/ANSI-C-grammar-y.html

// Lemon is here: http://www.hwaci.com/sw/lemon/  ...  the source is included
//  with MojoShader, and built with the library, so you don't have to track
//  down the dependency.

// HLSL syntax is described, informally, here:
//  http://msdn.microsoft.com/en-us/library/bb509615(VS.85).aspx

%name ParseHLSL

// Some shift-reduce conflicts are basically unavoidable, but if the final
//  conflict count matches this value, we consider it known and acceptable.
%expect 2

%start_symbol shader
%token_prefix TOKEN_HLSL_
%token_type { TokenData }
%extra_argument { Context *ctx }

%include {
#ifndef __MOJOSHADER_HLSL_COMPILER__
#error Do not compile this file directly.
#endif
}

%syntax_error {
    // !!! FIXME: make this a proper fail() function.
    fail(ctx, "Syntax error");
}

%parse_failure {
    // !!! FIXME: make this a proper fail() function.
    fail(ctx, "Giving up. Parser is hopelessly lost...");
}

%stack_overflow {
    // !!! FIXME: make this a proper fail() function.
    fail(ctx, "Giving up. Parser stack overflow");
}

// operator precedence (matches C spec)...

%left COMMA.
%right ASSIGN ADDASSIGN SUBASSIGN MULASSIGN DIVASSIGN MODASSIGN LSHIFTASSIGN
       RSHIFTASSIGN ANDASSIGN ORASSIGN XORASSIGN.
%right QUESTION.
%left OROR.
%left ANDAND.
%left OR.
%left XOR.
%left AND.
%left EQL NEQ.
%left LT LEQ GT GEQ.
%left LSHIFT RSHIFT.
%left PLUS MINUS.
%left STAR SLASH PERCENT.
%right TYPECAST EXCLAMATION COMPLEMENT MINUSMINUS PLUSPLUS.
%left DOT LBRACKET RBRACKET LPAREN RPAREN.

// bump up the precedence of ELSE, to avoid shift/reduce conflict on the
//  usual "dangling else ambiguity" ...
%right ELSE.


// The rules...

shader ::= compilation_units(B). { assert(ctx->ast == NULL); REVERSE_LINKED_LIST(CompilationUnit, B); ctx->ast = B; }

%type compilation_units { CompilationUnit * }
%destructor compilation_units { delete_compilation_unit(ctx, $$); }
compilation_units(A) ::= compilation_unit(B). { A = B; }
compilation_units(A) ::= compilation_units(B) compilation_unit(C). { if (C) { C->next = B; A = C; } }

%type compilation_unit { CompilationUnit * }
%destructor compilation_unit { delete_compilation_unit(ctx, $$); }
//compilation_unit(A) ::= PRAGMA . { A = NULL; }   // !!! FIXME: deal with pragmas.
compilation_unit(A) ::= variable_declaration(B). { A = new_global_variable(ctx, B); }
compilation_unit(A) ::= function_signature(B) SEMICOLON. { A = new_function(ctx, B, NULL); }
compilation_unit(A) ::= function_signature(B) statement_block(C). { A = new_function(ctx, B, C); }
compilation_unit(A) ::= typedef(B). { A = new_global_typedef(ctx, B); }
compilation_unit(A) ::= struct_declaration(B) SEMICOLON. { A = new_global_struct(ctx, B); }
//compilation_unit(A) ::= error SEMICOLON. { A = NULL; }  // !!! FIXME: research using the error nonterminal

%type typedef { Typedef * }
%destructor typedef { delete_typedef(ctx, $$); }
// !!! FIXME: should CONST be here, or in datatype?
typedef(A) ::= TYPEDEF CONST datatype(B) scalar_or_array(C). { A = new_typedef(ctx, 1, B, C); push_usertype(ctx, C->identifier, NULL); }
typedef(A) ::= TYPEDEF datatype(B) scalar_or_array(C). { A = new_typedef(ctx, 0, B, C); push_usertype(ctx, C->identifier, NULL); }

%type function_signature { FunctionSignature * }
%destructor function_signature { delete_function_signature(ctx, $$); }
function_signature(A) ::= function_storageclass(B) function_details(C) semantic(D). { A = C; A->storage_class = B; A->semantic = D; }
function_signature(A) ::= function_storageclass(B) function_details(C). { A = C; A->storage_class = B; }
function_signature(A) ::= function_details(B) semantic(C). { A = B; A->semantic = C; }
function_signature(A) ::= function_details(B). { A = B; }

%type function_details { FunctionSignature * }
%destructor function_details { delete_function_signature(ctx, $$); }
function_details(A) ::= datatype(B) IDENTIFIER(C) LPAREN function_parameters(D) RPAREN. { A = new_function_signature(ctx, B, C.string, D); }
function_details(A) ::= VOID IDENTIFIER(B) LPAREN function_parameters(C) RPAREN. { A = new_function_signature(ctx, NULL, B.string, C); }

// !!! FIXME: there is a "target" storage class that is the name of the
// !!! FIXME:  platform that this function is meant for...but I don't know
// !!! FIXME:  what tokens are valid here.

// !!! FIXME: Also, the docs say "one of" inline or target, but I bet you can
// !!! FIXME:  specify both.
%type function_storageclass { FunctionStorageClass }
//function_storageclass(A) ::= target(B). { A = B; }
function_storageclass(A) ::= INLINE. { A = FNSTORECLS_INLINE; }

%type function_parameters { FunctionParameters * }
%destructor function_parameters { delete_function_params(ctx, $$); }
function_parameters(A) ::= VOID. { A = NULL; }
function_parameters(A) ::= function_parameter_list(B). { REVERSE_LINKED_LIST(FunctionParameters, B); A = B; }
function_parameters(A) ::= . { A = NULL; }

%type function_parameter_list { FunctionParameters * }
%destructor function_parameter_list { delete_function_params(ctx, $$); }
function_parameter_list(A) ::= function_parameter(B). { A = B; }
function_parameter_list(A) ::= function_parameter_list(B) COMMA function_parameter(C). { C->next = B; A = C; }

// !!! FIXME: this is pretty unreadable.
%type function_parameter { FunctionParameters * }
%destructor function_parameter { delete_function_params(ctx, $$); }
function_parameter(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) semantic(E) interpolation_mod(F) initializer(G). { A = new_function_param(ctx, B, C, D.string, E, F, G); }
function_parameter(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) semantic(E) interpolation_mod(F). { A = new_function_param(ctx, B, C, D.string, E, F, NULL); }
function_parameter(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) semantic(E) initializer(F). { A = new_function_param(ctx, B, C, D.string, E, INTERPMOD_NONE, F); }
function_parameter(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) semantic(E). { A = new_function_param(ctx, B, C, D.string, E, INTERPMOD_NONE, NULL); }
function_parameter(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) interpolation_mod(E) initializer(F). { A = new_function_param(ctx, B, C, D.string, NULL, E, F); }
function_parameter(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) interpolation_mod(E). { A = new_function_param(ctx, B, C, D.string, NULL, E, NULL); }
function_parameter(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) initializer(E). { A = new_function_param(ctx, B, C, D.string, NULL, INTERPMOD_NONE, E); }
function_parameter(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D). { A = new_function_param(ctx, B, C, D.string, NULL, INTERPMOD_NONE, NULL); }
function_parameter(A) ::= datatype(B) IDENTIFIER(C) semantic(D) interpolation_mod(E) initializer(F). { A = new_function_param(ctx, INPUTMOD_NONE, B, C.string, D, E, F); }
function_parameter(A) ::= datatype(B) IDENTIFIER(C) semantic(D) interpolation_mod(E). { A = new_function_param(ctx, INPUTMOD_NONE, B, C.string, D, E, NULL); }
function_parameter(A) ::= datatype(B) IDENTIFIER(C) semantic(D) initializer(E). { A = new_function_param(ctx, INPUTMOD_NONE, B, C.string, D, INTERPMOD_NONE, E); }
function_parameter(A) ::= datatype(B) IDENTIFIER(C) semantic(D). { A = new_function_param(ctx, INPUTMOD_NONE, B, C.string, D, INTERPMOD_NONE, NULL); }
function_parameter(A) ::= datatype(B) IDENTIFIER(C) interpolation_mod(D) initializer(E). { A = new_function_param(ctx, INPUTMOD_NONE, B, C.string, NULL, D, E); }
function_parameter(A) ::= datatype(B) IDENTIFIER(C) interpolation_mod(D). { A = new_function_param(ctx, INPUTMOD_NONE, B, C.string, NULL, D, NULL); }
function_parameter(A) ::= datatype(B) IDENTIFIER(C) initializer(D). { A = new_function_param(ctx, INPUTMOD_NONE, B, C.string, NULL, INTERPMOD_NONE, D); }
function_parameter(A) ::= datatype(B) IDENTIFIER(C). { A = new_function_param(ctx, INPUTMOD_NONE, B, C.string, NULL, INTERPMOD_NONE, NULL); }

%type input_modifier { InputModifier }
input_modifier(A) ::= IN. { A = INPUTMOD_IN; }
input_modifier(A) ::= INOUT. { A = INPUTMOD_INOUT; }
input_modifier(A) ::= OUT. { A = INPUTMOD_OUT; }
input_modifier(A) ::= IN OUT. { A = INPUTMOD_INOUT; }
input_modifier(A) ::= OUT IN. { A = INPUTMOD_INOUT; }
input_modifier(A) ::= UNIFORM. { A = INPUTMOD_UNIFORM; }

%type semantic { const char * }
semantic(A) ::= COLON IDENTIFIER(B). { A = B.string; }

// DX10 only?
%type interpolation_mod { InterpolationModifier }
interpolation_mod(A) ::= LINEAR. { A = INTERPMOD_LINEAR; }
interpolation_mod(A) ::= CENTROID. { A = INTERPMOD_CENTROID; }
interpolation_mod(A) ::= NOINTERPOLATION. { A = INTERPMOD_NOINTERPOLATION; }
interpolation_mod(A) ::= NOPERSPECTIVE. { A = INTERPMOD_NOPERSPECTIVE; }
interpolation_mod(A) ::= SAMPLE. { A = INTERPMOD_SAMPLE; }

%type variable_declaration { VariableDeclaration * }
%destructor variable_declaration { delete_variable_declaration(ctx, $$); }
variable_declaration(A) ::= variable_attribute_list(B) datatype(C) variable_declaration_details_list(D) SEMICOLON. { REVERSE_LINKED_LIST(VariableDeclaration, D); A = D; A->attributes = B; A->datatype = C; }
variable_declaration(A) ::= datatype(B) variable_declaration_details_list(C) SEMICOLON. { REVERSE_LINKED_LIST(VariableDeclaration, C); A = C; A->datatype = B; }
variable_declaration(A) ::= struct_declaration(B) variable_declaration_details_list(C) SEMICOLON. { REVERSE_LINKED_LIST(VariableDeclaration, C); A = C; A->anonymous_datatype = B; }

%type variable_attribute_list { int }
variable_attribute_list(A) ::= variable_attribute(B). { A = B; }
variable_attribute_list(A) ::= variable_attribute_list(B) variable_attribute(C). { A = B | C; }

%type variable_attribute { int }
variable_attribute(A) ::= EXTERN. { A = VARATTR_EXTERN; }
variable_attribute(A) ::= NOINTERPOLATION. { A = VARATTR_NOINTERPOLATION; }
variable_attribute(A) ::= SHARED. { A = VARATTR_SHARED; }
variable_attribute(A) ::= STATIC. { A = VARATTR_STATIC; }
variable_attribute(A) ::= UNIFORM. { A = VARATTR_UNIFORM; }
variable_attribute(A) ::= VOLATILE. { A = VARATTR_VOLATILE; }
variable_attribute(A) ::= CONST. { A = VARATTR_CONST; }
variable_attribute(A) ::= ROWMAJOR. { A = VARATTR_ROWMAJOR; }
variable_attribute(A) ::= COLUMNMAJOR. { A = VARATTR_COLUMNMAJOR; }

%type variable_declaration_details_list { VariableDeclaration * }
%destructor variable_declaration_details_list { delete_variable_declaration(ctx, $$); }
variable_declaration_details_list(A) ::= variable_declaration_details(B). { A = B; }
variable_declaration_details_list(A) ::= variable_declaration_details_list(B) COMMA variable_declaration_details(C). { A = C; A->next = B; }

%type variable_declaration_details { VariableDeclaration * }
%destructor variable_declaration_details { delete_variable_declaration(ctx, $$); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) annotations(D) initializer(E) variable_lowlevel(F). { A = new_variable_declaration(ctx, B, C, D, E, F); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) annotations(D) initializer(E). { A = new_variable_declaration(ctx, B, C, D, E, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) annotations(D) variable_lowlevel(E). { A = new_variable_declaration(ctx, B, C, D, NULL, E); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) annotations(D). { A = new_variable_declaration(ctx, B, C, D, NULL, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) initializer(D) variable_lowlevel(E). { A = new_variable_declaration(ctx, B, C, NULL, D, E); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) initializer(D). { A = new_variable_declaration(ctx, B, C, NULL, D, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) variable_lowlevel(D). { A = new_variable_declaration(ctx, B, C, NULL, NULL, D); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C). { A = new_variable_declaration(ctx, B, C, NULL, NULL, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) annotations(C) initializer(D) variable_lowlevel(E). { A = new_variable_declaration(ctx, B, NULL, C, D, E); }
variable_declaration_details(A) ::= scalar_or_array(B) annotations(C) initializer(D). { A = new_variable_declaration(ctx, B, NULL, C, D, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) annotations(C) variable_lowlevel(D). { A = new_variable_declaration(ctx, B, NULL, C, NULL, D); }
variable_declaration_details(A) ::= scalar_or_array(B) annotations(C). { A = new_variable_declaration(ctx, B, NULL, C, NULL, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) initializer(C) variable_lowlevel(D). { A = new_variable_declaration(ctx, B, NULL, NULL, C, D); }
variable_declaration_details(A) ::= scalar_or_array(B) initializer(C). { A = new_variable_declaration(ctx, B, NULL, NULL, C, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) variable_lowlevel(C). { A = new_variable_declaration(ctx, B, NULL, NULL, NULL, C); }
variable_declaration_details(A) ::= scalar_or_array(B). { A = new_variable_declaration(ctx, B, NULL, NULL, NULL, NULL); }

// !!! FIXME: we don't handle full sampler declarations at the moment.


%type struct_declaration { StructDeclaration * }
%destructor struct_declaration { delete_struct_declaration(ctx, $$); }
struct_declaration(A) ::= struct_intro(B) LBRACE struct_member_list(C) RBRACE. { REVERSE_LINKED_LIST(StructMembers, C); A = new_struct_declaration(ctx, B, C); }

// This has to be separate from struct_declaration so that the struct is in the usertypemap when parsing its members.
%type struct_intro { const char * }
struct_intro(A) ::= STRUCT IDENTIFIER(B). { A = B.string; push_usertype(ctx, A, NULL); }

%type struct_member_list { StructMembers * }
%destructor struct_member_list { delete_struct_member(ctx, $$); }
struct_member_list(A) ::= struct_member(B). { A = B; }
struct_member_list(A) ::= struct_member_list(B) struct_member(C). { A = C; A->next = B; }

%type struct_member { StructMembers * }
%destructor struct_member { delete_struct_member(ctx, $$); }
struct_member(A) ::= interpolation_mod(B) struct_member_details(C). { StructMembers *i = C; A = C; while (i) { i->interpolation_mod = B; i = i->next; } }
struct_member(A) ::= struct_member_details(B). { A = B; }

%type struct_member_details { StructMembers * }
%destructor struct_member_details { delete_struct_member(ctx, $$); }
struct_member_details(A) ::= datatype(B) struct_member_item_list(C) SEMICOLON. { StructMembers *i = C; A = C; while (i) { i->datatype = B; i = i->next; } }

%type struct_member_item_list { StructMembers * }
%destructor struct_member_item_list { delete_struct_member(ctx, $$); }
struct_member_item_list(A) ::= scalar_or_array(B). { A = new_struct_member(ctx, B, NULL); }
struct_member_item_list(A) ::= scalar_or_array(B) semantic(C). { A = new_struct_member(ctx, B, C); }
struct_member_item_list(A) ::= struct_member_item_list(B) COMMA IDENTIFIER(C). { A = new_struct_member(ctx, new_scalar_or_array(ctx, C.string, 0, NULL), NULL); A->next = B; A->semantic = B->semantic; }

%type variable_lowlevel { VariableLowLevel * }
%destructor variable_lowlevel { delete_variable_lowlevel(ctx, $$); }
variable_lowlevel(A) ::= packoffset(B) register(C). { A = new_variable_lowlevel(ctx, B, C); }
variable_lowlevel(A) ::= register(B) packoffset(C). { A = new_variable_lowlevel(ctx, C, B); }
variable_lowlevel(A) ::= packoffset(B). { A = new_variable_lowlevel(ctx, B, NULL); }
variable_lowlevel(A) ::= register(B). { A = new_variable_lowlevel(ctx, NULL, B); }

// !!! FIXME: I sort of hate this type name.
%type scalar_or_array { ScalarOrArray * }
%destructor scalar_or_array { delete_scalar_or_array(ctx, $$); }
scalar_or_array(A) ::= IDENTIFIER(B) LBRACKET RBRACKET. { A = new_scalar_or_array(ctx, B.string, 1, NULL); }
scalar_or_array(A) ::= IDENTIFIER(B) LBRACKET expression(C) RBRACKET. { A = new_scalar_or_array(ctx, B.string, 1, C); }
scalar_or_array(A) ::= IDENTIFIER(B). { A = new_scalar_or_array(ctx, B.string, 0, NULL); }

%type packoffset { PackOffset * }
%destructor packoffset { delete_pack_offset(ctx, $$); }
packoffset(A) ::= COLON PACKOFFSET LPAREN IDENTIFIER(B) DOT IDENTIFIER(C) RPAREN. { A = new_pack_offset(ctx, B.string, C.string); }
packoffset(A) ::= COLON PACKOFFSET LPAREN IDENTIFIER(B) RPAREN. { A = new_pack_offset(ctx, B.string, NULL); }

// !!! FIXME: can take a profile, like ": register(ps_5_0, s)"
// !!! FIXME: IDENTIFIER is wrong: "s[2]" works, apparently. Use scalar_or_array instead?
// !!! FIXME: (these might be SM4 features)
%type register { const char * }
register(A) ::= COLON REGISTER LPAREN IDENTIFIER(B) RPAREN. { A = B.string; }

%type annotations { Annotations * }
%destructor annotations { delete_annotation(ctx, $$); }
annotations(A) ::= LT annotation_list(B) GT. { REVERSE_LINKED_LIST(Annotations, B); A = B; }

%type annotation_list { Annotations * }
%destructor annotation_list { delete_annotation(ctx, $$); }
annotation_list(A) ::= annotation(B). { A = B; }
annotation_list(A) ::= annotation_list(B) annotation(C). { A = C; A->next = B; }

// !!! FIXME: can this take a USERTYPE if we typedef'd a scalar type?
%type annotation { Annotations * }
%destructor annotation { delete_annotation(ctx, $$); }
annotation(A) ::= datatype_scalar(B) initializer(C) SEMICOLON. { A = new_annotation(ctx, B, C); }

%type initializer_block_list { Expression * }
%destructor initializer_block_list { delete_expr(ctx, $$); }
initializer_block_list(A) ::= expression(B). { A = B; }
initializer_block_list(A) ::= LBRACE initializer_block_list(B) RBRACE. { A = B; }
initializer_block_list(A) ::= initializer_block_list(B) COMMA initializer_block_list(C). { A = new_binary_expr(ctx, AST_OP_COMMA, B, C); }

%type initializer_block { Expression * }
%destructor initializer_block { delete_expr(ctx, $$); }
initializer_block(A) ::= LBRACE initializer_block_list(B) RBRACE. { A = B; }

%type initializer { Expression * }
%destructor initializer { delete_expr(ctx, $$); }
initializer(A) ::= ASSIGN initializer_block(B). { A = B; }
initializer(A) ::= ASSIGN expression(B). { A = B; }

%type intrinsic_datatype { const char * }
intrinsic_datatype(A) ::= datatype_vector(B). { A = B; }
intrinsic_datatype(A) ::= datatype_matrix(B). { A = B; }
intrinsic_datatype(A) ::= datatype_scalar(B). { A = B; }
intrinsic_datatype(A) ::= datatype_sampler(B). { A = B; }

%type datatype { const char * }
datatype(A) ::= intrinsic_datatype(B). { A = B; }
datatype(A) ::= USERTYPE(B). { A = B.string; }

%type datatype_sampler { const char * }
datatype_sampler(A) ::= SAMPLER. { A = stringcache_fmt(ctx->strcache, "s1"); }
datatype_sampler(A) ::= SAMPLER1D. { A = stringcache_fmt(ctx->strcache, "s1"); }
datatype_sampler(A) ::= SAMPLER2D. { A = stringcache_fmt(ctx->strcache, "s2"); }
datatype_sampler(A) ::= SAMPLER3D. { A = stringcache_fmt(ctx->strcache, "s3"); }
datatype_sampler(A) ::= SAMPLERCUBE. { A = stringcache_fmt(ctx->strcache, "sc"); }
datatype_sampler(A) ::= SAMPLER_STATE. { A = stringcache_fmt(ctx->strcache, "ss"); }
datatype_sampler(A) ::= SAMPLERSTATE. { A = stringcache_fmt(ctx->strcache, "ss"); }
datatype_sampler(A) ::= SAMPLERCOMPARISONSTATE. { A = stringcache_fmt(ctx->strcache, "sS"); }

%type datatype_scalar { const char * }
datatype_scalar(A) ::= BOOL. { A = stringcache_fmt(ctx->strcache, "b"); }
datatype_scalar(A) ::= INT. { A = stringcache_fmt(ctx->strcache, "i"); }
datatype_scalar(A) ::= UINT. { A = stringcache_fmt(ctx->strcache, "u"); }
datatype_scalar(A) ::= HALF. { A = stringcache_fmt(ctx->strcache, "h"); }
datatype_scalar(A) ::= FLOAT. { A = stringcache_fmt(ctx->strcache, "f"); }
datatype_scalar(A) ::= DOUBLE. { A = stringcache_fmt(ctx->strcache, "d"); }
datatype_scalar(A) ::= STRING. { A = stringcache_fmt(ctx->strcache, "S"); } // this is for the effects framework, not HLSL.
datatype_scalar(A) ::= SNORM FLOAT. { A = stringcache_fmt(ctx->strcache, "Fs"); }
datatype_scalar(A) ::= UNORM FLOAT. { A = stringcache_fmt(ctx->strcache, "Fu"); }
datatype_scalar(A) ::= BUFFER LT datatype_scalar(B) GT. { A = stringcache_fmt(ctx->strcache, "B%s", B); }

// !!! FIXME: MSDN suggests that the matrix ones are just typedefs inserted
// !!! FIXME:  before parsing begins, like:
// !!! FIXME: typedef matrix <bool,4,3> bool4x3;
// !!! FIXME:  ...maybe we can rip these out of the grammar and just create
// !!! FIXME:  them at startup?
%type datatype_vector { const char * }
datatype_vector(A) ::= VECTOR LT datatype_scalar(B) COMMA INT_CONSTANT(C) GT. { A = stringcache_fmt(ctx->strcache, "v%d%s", (int) C.i64, B); }

%type datatype_matrix { const char * }
datatype_matrix(A) ::= MATRIX LT datatype_scalar(B) COMMA INT_CONSTANT(C) COMMA INT_CONSTANT(D) GT. { A = stringcache_fmt(ctx->strcache, "m%d%d%s", (int) C.i64, (int) D.i64, B); }

%type statement_block { Statement * }
%destructor statement_block { delete_statement(ctx, $$); }
statement_block(A) ::= LBRACE RBRACE. { A = new_block_statement(ctx, NULL); }
statement_block(A) ::= LBRACE statement_list(B) RBRACE. { REVERSE_LINKED_LIST(Statement, B); A = new_block_statement(ctx, B); }

%type statement_list { Statement * }
%destructor statement_list { delete_statement(ctx, $$); }
statement_list(A) ::= statement(B). { A = B; }
statement_list(A) ::= statement_list(B) statement(C). { A = C; A->next = B; }

// These are for Shader Model 4 and Xbox 360 only, apparently.
// !!! FIXME: ...so we ignore them for now.
// !!! FIXME: can these stack?  "[isolate][unused]{}" or something?
%type statement_attribute { int }
statement_attribute(A) ::= ISOLATE. { A = 0; }  // !!! FIXME
statement_attribute(A) ::= MAXINSTRUCTIONCOUNT LPAREN INT_CONSTANT RPAREN. { A = 0; }  // !!! FIXME
statement_attribute(A) ::= NOEXPRESSIONOPTIMIZATIONS. { A = 0; }  // !!! FIXME
statement_attribute(A) ::= REMOVEUNUSEDINPUTS. { A = 0; }  // !!! FIXME
statement_attribute(A) ::= UNUSED. { A = 0; }  // !!! FIXME
statement_attribute(A) ::= XPS. { A = 0; }  // !!! FIXME

%type statement { Statement * }
%destructor statement { delete_statement(ctx, $$); }
statement(A) ::= BREAK SEMICOLON. { A = new_break_statement(ctx); }
statement(A) ::= CONTINUE SEMICOLON. { A = new_continue_statement(ctx); }
statement(A) ::= DISCARD SEMICOLON. { A = new_discard_statement(ctx); }
statement(A) ::= LBRACKET statement_attribute(B) RBRACKET statement_block(C). { A = C; /* !!! FIXME: A->attributes = B;*/ B = 0; }
statement(A) ::= variable_declaration(B). { A = new_vardecl_statement(ctx, B); }
statement(A) ::= struct_declaration(B) SEMICOLON. { A = new_struct_statement(ctx, B); }
statement(A) ::= do_intro(B) DO statement(C) WHILE LPAREN expression(D) RPAREN SEMICOLON. { A = new_do_statement(ctx, B, C, D); }
statement(A) ::= while_intro(B) LPAREN expression(C) RPAREN statement(D). { A = new_while_statement(ctx, B, C, D); }
statement(A) ::= if_intro(B) LPAREN expression(C) RPAREN statement(D). { A = new_if_statement(ctx, B, C, D, NULL); }
statement(A) ::= if_intro(B) LPAREN expression(C) RPAREN statement(D) ELSE statement(E). { A = new_if_statement(ctx, B, C, D, E); }
statement(A) ::= switch_intro(B) LPAREN expression(C) RPAREN LBRACE switch_case_list(D) RBRACE. { REVERSE_LINKED_LIST(SwitchCases, D); A = new_switch_statement(ctx, B, C, D); }
statement(A) ::= typedef(B). { A = new_typedef_statement(ctx, B); }
statement(A) ::= SEMICOLON. { A = new_empty_statement(ctx); }
statement(A) ::= expression(B) SEMICOLON. { A = new_expr_statement(ctx, B); }
statement(A) ::= RETURN SEMICOLON. { A = new_return_statement(ctx, NULL); }
statement(A) ::= RETURN expression(B) SEMICOLON. { A = new_return_statement(ctx, B); }
statement(A) ::= statement_block(B). { A = B; }
statement(A) ::= for_statement(B). { A = B; }
//statement(A) ::= error SEMICOLON. { A = NULL; }  // !!! FIXME: research using the error nonterminal

%type while_intro { int64 }
while_intro(A) ::= LBRACKET UNROLL LPAREN INT_CONSTANT(B) RPAREN RBRACKET WHILE. { A = (B.i64 < 0) ? 0 : B.i64; }
while_intro(A) ::= LBRACKET UNROLL RBRACKET WHILE. { A = -1; }
while_intro(A) ::= LBRACKET LOOP RBRACKET WHILE. { A = 0; }
while_intro(A) ::= WHILE. { A = -2; }

%type for_statement { Statement * }
%destructor for_statement { delete_statement(ctx, $$); }
for_statement(A) ::= for_intro(B) for_details(C). { A = C; ((ForStatement *) A)->unroll = B; }

%type for_intro { int64 }
for_intro(A) ::= LBRACKET UNROLL LPAREN INT_CONSTANT(B) RPAREN RBRACKET FOR. { A = (B.i64 < 0) ? 0 : B.i64; }
for_intro(A) ::= LBRACKET UNROLL RBRACKET FOR. { A = -1; }
for_intro(A) ::= LBRACKET LOOP RBRACKET FOR. { A = 0; }
for_intro(A) ::= FOR. { A = -2; }

%type for_details { Statement * }
%destructor for_details { delete_statement(ctx, $$); }
for_details(A) ::= LPAREN expression(B) SEMICOLON expression(C) SEMICOLON expression(D) RPAREN statement(E). { A = new_for_statement(ctx, NULL, B, C, D, E); }
for_details(A) ::= LPAREN SEMICOLON SEMICOLON RPAREN statement(B). { A = new_for_statement(ctx, NULL, NULL, NULL, NULL, B); }
for_details(A) ::= LPAREN SEMICOLON SEMICOLON expression(B) RPAREN statement(C). { A = new_for_statement(ctx, NULL, NULL, NULL, B, C); }
for_details(A) ::= LPAREN SEMICOLON expression(B) SEMICOLON RPAREN statement(C). { A = new_for_statement(ctx, NULL, NULL, B, NULL, C); }
for_details(A) ::= LPAREN SEMICOLON expression(B) SEMICOLON expression(C) RPAREN statement(D). { A = new_for_statement(ctx, NULL, NULL, B, C, D); }
for_details(A) ::= LPAREN expression(B) SEMICOLON SEMICOLON RPAREN statement(C). { A = new_for_statement(ctx, NULL, B, NULL, NULL, C); }
for_details(A) ::= LPAREN expression(B) SEMICOLON SEMICOLON expression(C) RPAREN statement(D). { A = new_for_statement(ctx, NULL, B, NULL, C, D); }
for_details(A) ::= LPAREN expression(B) SEMICOLON expression(C) SEMICOLON RPAREN statement(D). { A = new_for_statement(ctx, NULL, B, C, NULL, D); }
for_details(A) ::= LPAREN variable_declaration(B) expression(C) SEMICOLON expression(D) RPAREN statement(E). { A = new_for_statement(ctx, B, NULL, C, D, E); }
for_details(A) ::= LPAREN variable_declaration(B) SEMICOLON RPAREN statement(C).  { A = new_for_statement(ctx, B, NULL, NULL, NULL, C); }
for_details(A) ::= LPAREN variable_declaration(B) SEMICOLON expression(C) RPAREN statement(D). { A = new_for_statement(ctx, B, NULL, C, NULL, D); }
for_details(A) ::= LPAREN variable_declaration(B) expression(C) SEMICOLON RPAREN statement(D). { A = new_for_statement(ctx, B, NULL, C, NULL, D); }

%type do_intro { int64 }
do_intro(A) ::= LBRACKET UNROLL LPAREN INT_CONSTANT(B) RPAREN RBRACKET DO. { A = (B.i64 < 0) ? 0 : (int) B.i64; }
do_intro(A) ::= LBRACKET UNROLL RBRACKET DO. { A = -1; }
do_intro(A) ::= LBRACKET LOOP RBRACKET DO. { A = 0; }
do_intro(A) ::= DO. { A = -2; }

%type if_intro { int }
if_intro(A) ::= LBRACKET BRANCH RBRACKET IF. { A = IFATTR_BRANCH; }
if_intro(A) ::= LBRACKET FLATTEN RBRACKET IF. { A = IFATTR_FLATTEN; }
if_intro(A) ::= LBRACKET IFALL RBRACKET IF. { A = IFATTR_IFALL; }
if_intro(A) ::= LBRACKET IFANY RBRACKET IF. { A = IFATTR_IFANY; }
if_intro(A) ::= LBRACKET PREDICATE RBRACKET IF. { A = IFATTR_PREDICATE; }
if_intro(A) ::= LBRACKET PREDICATEBLOCK RBRACKET IF. { A = IFATTR_PREDICATEBLOCK; }
if_intro(A) ::= IF. { A = IFATTR_NONE; }

%type switch_intro { int }
switch_intro(A) ::= LBRACKET FLATTEN RBRACKET SWITCH. { A = SWITCHATTR_FLATTEN; }
switch_intro(A) ::= LBRACKET BRANCH RBRACKET SWITCH. { A = SWITCHATTR_BRANCH; }
switch_intro(A) ::= LBRACKET FORCECASE RBRACKET SWITCH. { A = SWITCHATTR_FORCECASE; }
switch_intro(A) ::= LBRACKET CALL RBRACKET SWITCH. { A = SWITCHATTR_CALL; }
switch_intro(A) ::= SWITCH. { A = SWITCHATTR_NONE; }

%type switch_case_list { SwitchCases * }
%destructor switch_case_list { delete_switch_case(ctx, $$); }
switch_case_list(A) ::= switch_case(B). { A = B; }
switch_case_list(A) ::= switch_case_list(B) switch_case(C). { A = C; A->next = B; }

// You can do math here, apparently, as long as it produces an int constant.
//  ...so "case 3+2:" works.
%type switch_case { SwitchCases * }
%destructor switch_case { delete_switch_case(ctx, $$); }
switch_case(A) ::= CASE expression(B) COLON statement_list(C). { REVERSE_LINKED_LIST(Statement, C); A = new_switch_case(ctx, B, C); }
switch_case(A) ::= CASE expression(B) COLON. { A = new_switch_case(ctx, B, NULL); }
switch_case(A) ::= DEFAULT COLON statement_list(B). { REVERSE_LINKED_LIST(Statement, B); A = new_switch_case(ctx, NULL, B); }
switch_case(A) ::= DEFAULT COLON. { A = new_switch_case(ctx, NULL, NULL); }

// the expression stuff is based on Jeff Lee's ANSI C grammar.
%type primary_expr { Expression * }
%destructor primary_expr { delete_expr(ctx, $$); }
primary_expr(A) ::= IDENTIFIER(B). { A = new_identifier_expr(ctx, B.string); }
primary_expr(A) ::= INT_CONSTANT(B). { A = new_literal_int_expr(ctx, B.i64); }
primary_expr(A) ::= FLOAT_CONSTANT(B). { A = new_literal_float_expr(ctx, B.dbl); }
primary_expr(A) ::= STRING_LITERAL(B). { A = new_literal_string_expr(ctx, B.string); }
primary_expr(A) ::= TRUE. { A = new_literal_boolean_expr(ctx, 1); }
primary_expr(A) ::= FALSE. { A = new_literal_boolean_expr(ctx, 0); }
primary_expr(A) ::= LPAREN expression(B) RPAREN. { A = B; }

%type postfix_expr { Expression * }
%destructor postfix_expr { delete_expr(ctx, $$); }
postfix_expr(A) ::= primary_expr(B). { A = B; }
postfix_expr(A) ::= postfix_expr(B) LBRACKET expression(C) RBRACKET. { A = new_binary_expr(ctx, AST_OP_DEREF_ARRAY, B, C); }
postfix_expr(A) ::= postfix_expr(B) arguments(C). { A = new_callfunc_expr(ctx, B, C); }
postfix_expr(A) ::= datatype(B) arguments(C). { A = new_constructor_expr(ctx, B, C); } // HLSL constructor
postfix_expr(A) ::= postfix_expr(B) DOT IDENTIFIER(C). { A = new_binary_expr(ctx, AST_OP_DEREF_STRUCT, B, new_identifier_expr(ctx, C.string)); }
postfix_expr(A) ::= postfix_expr(B) PLUSPLUS. { A = new_unary_expr(ctx, AST_OP_POSTINCREMENT, B); }
postfix_expr(A) ::= postfix_expr(B) MINUSMINUS. { A = new_unary_expr(ctx, AST_OP_POSTDECREMENT, B); }

%type arguments { Arguments * }
%destructor arguments { delete_arguments(ctx, $$); }
arguments(A) ::= LPAREN RPAREN. { A = NULL; }
arguments(A) ::= LPAREN argument_list(B) RPAREN. { REVERSE_LINKED_LIST(Arguments, B); A = B; }

%type argument_list { Arguments * }
%destructor argument_list { delete_arguments(ctx, $$); }
argument_list(A) ::= assignment_expr(B). { A = new_argument(ctx, B); }
argument_list(A) ::= argument_list(B) COMMA assignment_expr(C). { A = new_argument(ctx, C); A->next = B; }

%type unary_expr { Expression * }
%destructor unary_expr { delete_expr(ctx, $$); }
unary_expr(A) ::= postfix_expr(B). { A = B; }
unary_expr(A) ::= PLUSPLUS unary_expr(B). { A = new_unary_expr(ctx, AST_OP_PREINCREMENT, B); }
unary_expr(A) ::= MINUSMINUS unary_expr(B). { A = new_unary_expr(ctx, AST_OP_PREDECREMENT, B); }
unary_expr(A) ::= PLUS cast_expr(B). { A = B; }  // unary "+x" is always a no-op, so throw it away here.
unary_expr(A) ::= MINUS cast_expr(B). { A = new_unary_expr(ctx, AST_OP_NEGATE, B); }
unary_expr(A) ::= COMPLEMENT cast_expr(B). { A = new_unary_expr(ctx, AST_OP_COMPLEMENT, B); }
unary_expr(A) ::= EXCLAMATION cast_expr(B). { A = new_unary_expr(ctx, AST_OP_NOT, B); }

%type cast_expr { Expression * }
%destructor cast_expr { delete_expr(ctx, $$); }
cast_expr(A) ::= unary_expr(B). { A = B; }
cast_expr(A) ::= LPAREN datatype(B) RPAREN cast_expr(C). { A = new_cast_expr(ctx, B, C); }

%type multiplicative_expr { Expression * }
%destructor multiplicative_expr { delete_expr(ctx, $$); }
multiplicative_expr(A) ::= cast_expr(B). { A = B; }
multiplicative_expr(A) ::= multiplicative_expr(B) STAR cast_expr(C). { A = new_binary_expr(ctx, AST_OP_MULTIPLY, B, C); }
multiplicative_expr(A) ::= multiplicative_expr(B) SLASH cast_expr(C). { A = new_binary_expr(ctx, AST_OP_DIVIDE, B, C); }
multiplicative_expr(A) ::= multiplicative_expr(B) PERCENT cast_expr(C). { A = new_binary_expr(ctx, AST_OP_MODULO, B, C); }

%type additive_expr { Expression * }
%destructor additive_expr { delete_expr(ctx, $$); }
additive_expr(A) ::= multiplicative_expr(B). { A = B; }
additive_expr(A) ::= additive_expr(B) PLUS multiplicative_expr(C). { A = new_binary_expr(ctx, AST_OP_ADD, B, C); }
additive_expr(A) ::= additive_expr(B) MINUS multiplicative_expr(C). { A = new_binary_expr(ctx, AST_OP_SUBTRACT, B, C); }

%type shift_expr { Expression * }
%destructor shift_expr { delete_expr(ctx, $$); }
shift_expr(A) ::= additive_expr(B). { A = B; }
shift_expr(A) ::= shift_expr(B) LSHIFT additive_expr(C). { A = new_binary_expr(ctx, AST_OP_LSHIFT, B, C); }
shift_expr(A) ::= shift_expr(B) RSHIFT additive_expr(C). { A = new_binary_expr(ctx, AST_OP_RSHIFT, B, C); }

%type relational_expr { Expression * }
%destructor relational_expr { delete_expr(ctx, $$); }
relational_expr(A) ::= shift_expr(B). { A = B; }
relational_expr(A) ::= relational_expr(B) LT shift_expr(C). { A = new_binary_expr(ctx, AST_OP_LESSTHAN, B, C); }
relational_expr(A) ::= relational_expr(B) GT shift_expr(C). { A = new_binary_expr(ctx, AST_OP_GREATERTHAN, B, C); }
relational_expr(A) ::= relational_expr(B) LEQ shift_expr(C). { A = new_binary_expr(ctx, AST_OP_LESSTHANOREQUAL, B, C); }
relational_expr(A) ::= relational_expr(B) GEQ shift_expr(C). { A = new_binary_expr(ctx, AST_OP_GREATERTHANOREQUAL, B, C); }

%type equality_expr { Expression * }
%destructor equality_expr { delete_expr(ctx, $$); }
equality_expr(A) ::= relational_expr(B). { A = B; }
equality_expr(A) ::= equality_expr(B) EQL relational_expr(C). { A = new_binary_expr(ctx, AST_OP_EQUAL, B, C); }
equality_expr(A) ::= equality_expr(B) NEQ relational_expr(C). { A = new_binary_expr(ctx, AST_OP_NOTEQUAL, B, C); }

%type and_expr { Expression * }
%destructor and_expr { delete_expr(ctx, $$); }
and_expr(A) ::= equality_expr(B). { A = B; }
and_expr(A) ::= and_expr(B) AND equality_expr(C). { A = new_binary_expr(ctx, AST_OP_BINARYAND, B, C); }

%type exclusive_or_expr { Expression * }
%destructor exclusive_or_expr { delete_expr(ctx, $$); }
exclusive_or_expr(A) ::= and_expr(B). { A = B; }
exclusive_or_expr(A) ::= exclusive_or_expr(B) XOR and_expr(C). { A = new_binary_expr(ctx, AST_OP_BINARYXOR, B, C); }

%type inclusive_or_expr { Expression * }
%destructor inclusive_or_expr { delete_expr(ctx, $$); }
inclusive_or_expr(A) ::= exclusive_or_expr(B). { A = B; }
inclusive_or_expr(A) ::= inclusive_or_expr(B) OR exclusive_or_expr(C). { A = new_binary_expr(ctx, AST_OP_BINARYOR, B, C); }

%type logical_and_expr { Expression * }
%destructor logical_and_expr { delete_expr(ctx, $$); }
logical_and_expr(A) ::= inclusive_or_expr(B). { A = B; }
logical_and_expr(A) ::= logical_and_expr(B) ANDAND inclusive_or_expr(C). { A = new_binary_expr(ctx, AST_OP_LOGICALAND, B, C); }

%type logical_or_expr { Expression * }
%destructor logical_or_expr { delete_expr(ctx, $$); }
logical_or_expr(A) ::= logical_and_expr(B). { A = B; }
logical_or_expr(A) ::= logical_or_expr(B) OROR logical_and_expr(C). { A = new_binary_expr(ctx, AST_OP_LOGICALOR, B, C); }

%type conditional_expr { Expression * }
%destructor conditional_expr { delete_expr(ctx, $$); }
conditional_expr(A) ::= logical_or_expr(B). { A = B; }
conditional_expr(A) ::= logical_or_expr(B) QUESTION logical_or_expr(C) COLON conditional_expr(D). { A = new_ternary_expr(ctx, AST_OP_CONDITIONAL, B, C, D); }

%type assignment_expr { Expression * }
%destructor assignment_expr { delete_expr(ctx, $$); }
assignment_expr(A) ::= conditional_expr(B). { A = B; }
assignment_expr(A) ::= unary_expr(B) ASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_ASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) MULASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_MULASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) DIVASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_DIVASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) MODASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_MODASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) ADDASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_ADDASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) SUBASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_SUBASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) LSHIFTASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_LSHIFTASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) RSHIFTASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_RSHIFTASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) ANDASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_ANDASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) XORASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_XORASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) ORASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_ORASSIGN, B, C); }

%type expression { Expression * }
%destructor expression { delete_expr(ctx, $$); }
expression(A) ::= assignment_expr(B). { A = B; }
expression(A) ::= expression(B) COMMA assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_COMMA, B, C); }

// end of mojoshader_parser_hlsl.lemon ...