/**
* MojoShader; generate shader programs from bytecode of compiled
* Direct3D shaders.
*
* Please see the file LICENSE.txt in the source's root directory.
*
* This file written by Ryan C. Gordon.
*/
#define __MOJOSHADER_INTERNAL__ 1
#include "mojoshader_internal.h"
#if SUPPORT_PROFILE_SPIRV
#include "vulkan/vulkan.h"
#define VULKAN_INSTANCE_FUNCTION(ret, func, params) \
typedef ret (VKAPI_CALL *vkfntype_MOJOSHADER_##func) params;
#define VULKAN_DEVICE_FUNCTION(ret, func, params) \
typedef ret (VKAPI_CALL *vkfntype_MOJOSHADER_##func) params;
#include "mojoshader_vulkan_vkfuncs.h"
#define UBO_BUFFER_SIZE 8000000 // 8MB
// Internal struct defs...
typedef struct MOJOSHADER_vkShader
{
const MOJOSHADER_parseData *parseData;
uint16_t tag;
uint32_t refcount;
} MOJOSHADER_vkShader;
typedef struct MOJOSHADER_vkProgram
{
VkShaderModule vertexModule;
VkShaderModule pixelModule;
MOJOSHADER_vkShader *vertexShader;
MOJOSHADER_vkShader *pixelShader;
} MOJOSHADER_vkProgram;
typedef struct MOJOSHADER_vkUniformBuffer
{
VkBuffer buffer;
VkDeviceMemory deviceMemory;
VkDeviceSize bufferSize;
VkDeviceSize dynamicOffset;
VkDeviceSize currentBlockSize;
uint8_t *mapPointer;
} MOJOSHADER_vkUniformBuffer;
// Error state...
static char error_buffer[1024] = { '\0' };
static void set_error(const char *str)
{
snprintf(error_buffer, sizeof (error_buffer), "%s", str);
} // set_error
static inline void out_of_memory(void)
{
set_error("out of memory");
} // out_of_memory
// Max entries for each register file type
#define MAX_REG_FILE_F 8192
#define MAX_REG_FILE_I 2047
#define MAX_REG_FILE_B 2047
typedef struct MOJOSHADER_vkContext
{
VkInstance *instance;
VkPhysicalDevice *physical_device;
VkDevice *logical_device;
PFN_vkGetInstanceProcAddr instance_proc_lookup;
PFN_vkGetDeviceProcAddr device_proc_lookup;
uint32_t graphics_queue_family_index;
uint32_t maxUniformBufferRange;
uint32_t minUniformBufferOffsetAlignment;
int32_t frames_in_flight;
MOJOSHADER_malloc malloc_fn;
MOJOSHADER_free free_fn;
void *malloc_data;
// The constant register files...
// !!! FIXME: Man, it kills me how much memory this takes...
// !!! FIXME: ... make this dynamically allocated on demand.
float vs_reg_file_f[MAX_REG_FILE_F * 4];
int32_t vs_reg_file_i[MAX_REG_FILE_I * 4];
uint8_t vs_reg_file_b[MAX_REG_FILE_B * 4];
float ps_reg_file_f[MAX_REG_FILE_F * 4];
int32_t ps_reg_file_i[MAX_REG_FILE_I * 4];
uint8_t ps_reg_file_b[MAX_REG_FILE_B * 4];
MOJOSHADER_vkUniformBuffer *vertUboBuffer;
MOJOSHADER_vkUniformBuffer *fragUboBuffer;
MOJOSHADER_vkProgram *bound_program;
HashTable *linker_cache;
#define VULKAN_INSTANCE_FUNCTION(ret, func, params) \
vkfntype_MOJOSHADER_##func func;
#define VULKAN_DEVICE_FUNCTION(ret, func, params) \
vkfntype_MOJOSHADER_##func func;
#include "mojoshader_vulkan_vkfuncs.h"
} MOJOSHADER_vkContext;
static MOJOSHADER_vkContext *ctx = NULL;
static uint16_t tagCounter = 1;
static uint8_t find_memory_type(
MOJOSHADER_vkContext *ctx,
uint32_t typeFilter,
VkMemoryPropertyFlags properties,
uint32_t *result
) {
uint32_t i;
VkPhysicalDeviceMemoryProperties memoryProperties;
ctx->vkGetPhysicalDeviceMemoryProperties(*ctx->physical_device, &memoryProperties);
for (i = 0; i < memoryProperties.memoryTypeCount; i++)
{
if ((typeFilter & (1 << i))
&& (memoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
{
*result = i;
return 1;
} // if
} // for
return 0;
} // find_memory_type
static uint32_t next_highest_offset_alignment(uint32_t offset)
{
return (
(offset + ctx->minUniformBufferOffsetAlignment - 1) /
ctx->minUniformBufferOffsetAlignment *
ctx->minUniformBufferOffsetAlignment
);
} // next_highest_offset_alignment
static MOJOSHADER_vkUniformBuffer *create_ubo(MOJOSHADER_vkContext *ctx)
{
MOJOSHADER_vkUniformBuffer *result = (MOJOSHADER_vkUniformBuffer *) ctx->malloc_fn(
sizeof(MOJOSHADER_vkUniformBuffer),
ctx->malloc_data
);
VkBufferCreateInfo bufferCreateInfo =
{
VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO
};
VkMemoryRequirements memoryRequirements;
VkMemoryAllocateInfo allocateInfo =
{
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO
};
bufferCreateInfo.flags = 0;
bufferCreateInfo.size = UBO_BUFFER_SIZE;
bufferCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bufferCreateInfo.queueFamilyIndexCount = 1;
bufferCreateInfo.pQueueFamilyIndices = &ctx->graphics_queue_family_index;
ctx->vkCreateBuffer(
*ctx->logical_device,
&bufferCreateInfo,
NULL,
&result->buffer
);
ctx->vkGetBufferMemoryRequirements(
*ctx->logical_device,
result->buffer,
&memoryRequirements
);
allocateInfo.allocationSize = UBO_BUFFER_SIZE;
if (!find_memory_type(ctx,
memoryRequirements.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&allocateInfo.memoryTypeIndex))
{
set_error("failed to find suitable memory type for UBO memory");
return NULL;
} // if
ctx->vkAllocateMemory(*ctx->logical_device,
&allocateInfo,
NULL,
&result->deviceMemory
);
ctx->vkBindBufferMemory(*ctx->logical_device,
result->buffer,
result->deviceMemory,
0
);
ctx->vkMapMemory(*ctx->logical_device,
result->deviceMemory,
0,
UBO_BUFFER_SIZE,
0,
(void**) &result->mapPointer
);
result->bufferSize = UBO_BUFFER_SIZE;
result->currentBlockSize = 0;
result->dynamicOffset = 0;
return result;
} // create_ubo
static uint32_t uniform_data_size(MOJOSHADER_vkShader *shader)
{
int32_t i;
int32_t buflen = 0;
const int32_t uniformSize = 16; // Yes, even the bool registers
for (i = 0; i < shader->parseData->uniform_count; i++)
{
const int32_t arrayCount = shader->parseData->uniforms[i].array_count;
buflen += (arrayCount ? arrayCount : 1) * uniformSize;
} // for
return buflen;
} // uniform_data_size
static VkBuffer get_uniform_buffer(MOJOSHADER_vkShader *shader)
{
if (shader == NULL || shader->parseData->uniform_count == 0)
return VK_NULL_HANDLE;
if (shader->parseData->shader_type == MOJOSHADER_TYPE_VERTEX)
return ctx->vertUboBuffer->buffer;
else
return ctx->fragUboBuffer->buffer;
} // get_uniform_buffer
static VkDeviceSize get_uniform_offset(MOJOSHADER_vkShader *shader)
{
if (shader == NULL || shader->parseData->uniform_count == 0)
return 0;
if (shader->parseData->shader_type == MOJOSHADER_TYPE_VERTEX)
return ctx->vertUboBuffer->dynamicOffset;
else
return ctx->fragUboBuffer->dynamicOffset;
} // get_uniform_offset
static VkDeviceSize get_uniform_size(MOJOSHADER_vkShader *shader)
{
if (shader == NULL || shader->parseData->uniform_count == 0)
return 0;
if (shader->parseData->shader_type == MOJOSHADER_TYPE_VERTEX)
return ctx->vertUboBuffer->currentBlockSize;
else
return ctx->fragUboBuffer->currentBlockSize;
} // get_uniform_size
static void update_uniform_buffer(MOJOSHADER_vkShader *shader)
{
int32_t i, j;
int32_t offset;
uint8_t *contents;
uint32_t *contentsI;
float *regF; int *regI; uint8_t *regB;
MOJOSHADER_vkUniformBuffer *ubo;
if (shader == NULL || shader->parseData->uniform_count == 0)
return;
if (shader->parseData->shader_type == MOJOSHADER_TYPE_VERTEX)
{
regF = ctx->vs_reg_file_f;
regI = ctx->vs_reg_file_i;
regB = ctx->vs_reg_file_b;
ubo = ctx->vertUboBuffer;
} // if
else
{
regF = ctx->ps_reg_file_f;
regI = ctx->ps_reg_file_i;
regB = ctx->ps_reg_file_b;
ubo = ctx->fragUboBuffer;
} // else
ubo->dynamicOffset += ubo->currentBlockSize;
ubo->currentBlockSize = next_highest_offset_alignment(uniform_data_size(shader));
if (ubo->dynamicOffset + ubo->currentBlockSize >= ubo->bufferSize)
{
set_error("UBO overflow!!");
} // if
contents = ubo->mapPointer + ubo->dynamicOffset;
offset = 0;
for (i = 0; i < shader->parseData->uniform_count; i++)
{
const int32_t index = shader->parseData->uniforms[i].index;
const int32_t arrayCount = shader->parseData->uniforms[i].array_count;
const int32_t size = arrayCount ? arrayCount : 1;
switch (shader->parseData->uniforms[i].type)
{
case MOJOSHADER_UNIFORM_FLOAT:
memcpy(
contents + offset,
®F[4 * index],
size * 16
);
break;
case MOJOSHADER_UNIFORM_INT:
memcpy(
contents + offset,
®I[4 * index],
size * 16
);
break;
case MOJOSHADER_UNIFORM_BOOL:
contentsI = (uint32_t *) (contents + offset);
for (j = 0; j < size; j++)
contentsI[j * 4] = regB[index + j];
break;
default:
set_error(
"SOMETHING VERY WRONG HAPPENED WHEN UPDATING UNIFORMS"
);
assert(0);
break;
} // switch
offset += size * 16;
} // for
} // update_uniform_buffer
static void lookup_entry_points(MOJOSHADER_vkContext *ctx)
{
#define VULKAN_INSTANCE_FUNCTION(ret, func, params) \
ctx->func = (vkfntype_MOJOSHADER_##func) ctx->instance_proc_lookup(*ctx->instance, #func);
#define VULKAN_DEVICE_FUNCTION(ret, func, params) \
ctx->func = (vkfntype_MOJOSHADER_##func) ctx->device_proc_lookup(*ctx->logical_device, #func);
#include "mojoshader_vulkan_vkfuncs.h"
} // lookup_entry_points
static int shader_bytecode_len(MOJOSHADER_vkShader *shader)
{
return shader->parseData->output_len - sizeof(SpirvPatchTable);
} // shader_bytecode_len
static VkShaderModule compile_shader(MOJOSHADER_vkShader *shader)
{
VkResult result;
VkShaderModule module;
VkShaderModuleCreateInfo shaderModuleCreateInfo =
{
VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO
};
shaderModuleCreateInfo.flags = 0;
shaderModuleCreateInfo.codeSize = shader_bytecode_len(shader);
shaderModuleCreateInfo.pCode = (uint32_t*) shader->parseData->output;
result = ctx->vkCreateShaderModule(
*ctx->logical_device,
&shaderModuleCreateInfo,
NULL,
&module
);
if (result != VK_SUCCESS)
{
// FIXME: should display VK error code
set_error("Error when creating VkShaderModule");
ctx->vkDestroyShaderModule(
*ctx->logical_device,
module,
NULL
);
return VK_NULL_HANDLE;
} // if
return module;
} // compile_shader
typedef struct
{
MOJOSHADER_vkShader *vertex;
MOJOSHADER_vkShader *fragment;
} BoundShaders;
static uint32_t hash_shaders(const void *sym, void *data)
{
(void) data;
const BoundShaders *s = (const BoundShaders *) sym;
const uint16_t v = (s->vertex) ? s->vertex->tag : 0;
const uint16_t f = (s->fragment) ? s->fragment->tag : 0;
return ((uint32_t) v << 16) | (uint32_t) f;
} // hash_shaders
static int match_shaders(const void *_a, const void *_b, void *data)
{
(void) data;
const BoundShaders *a = (const BoundShaders *) _a;
const BoundShaders *b = (const BoundShaders *) _b;
const uint16_t av = (a->vertex) ? a->vertex->tag : 0;
const uint16_t bv = (b->vertex) ? b->vertex->tag : 0;
if (av != bv)
return 0;
const uint16_t af = (a->fragment) ? a->fragment->tag : 0;
const uint16_t bf = (b->fragment) ? b->fragment->tag : 0;
if (af != bf)
return 0;
return 1;
} // match_shaders
static void nuke_shaders(const void *key, const void *value, void *data)
{
(void) data;
ctx->free_fn((void *) key, ctx->malloc_data); // this was a BoundShaders struct.
MOJOSHADER_vkDeleteProgram((MOJOSHADER_vkProgram *) value);
} // nuke_shaders
// Public API
MOJOSHADER_vkContext *MOJOSHADER_vkCreateContext(
VkInstance *instance,
VkPhysicalDevice *physical_device,
VkDevice *logical_device,
int frames_in_flight,
PFN_MOJOSHADER_vkGetInstanceProcAddr instance_lookup,
PFN_MOJOSHADER_vkGetDeviceProcAddr device_lookup,
unsigned int graphics_queue_family_index,
unsigned int max_uniform_buffer_range,
unsigned int min_uniform_buffer_offset_alignment,
MOJOSHADER_malloc m, MOJOSHADER_free f,
void *malloc_d
) {
MOJOSHADER_vkContext* resultCtx;
if (m == NULL) m = MOJOSHADER_internal_malloc;
if (f == NULL) f = MOJOSHADER_internal_free;
resultCtx = (MOJOSHADER_vkContext *) m(sizeof(MOJOSHADER_vkContext), malloc_d);
if (resultCtx == NULL)
{
out_of_memory();
goto init_fail;
} // if
memset(resultCtx, '\0', sizeof(MOJOSHADER_vkContext));
resultCtx->malloc_fn = m;
resultCtx->free_fn = f;
resultCtx->malloc_data = malloc_d;
resultCtx->instance = (VkInstance*) instance;
resultCtx->physical_device = (VkPhysicalDevice*) physical_device;
resultCtx->logical_device = (VkDevice*) logical_device;
resultCtx->instance_proc_lookup = (PFN_vkGetInstanceProcAddr) instance_lookup;
resultCtx->device_proc_lookup = (PFN_vkGetDeviceProcAddr) device_lookup;
resultCtx->frames_in_flight = frames_in_flight;
resultCtx->graphics_queue_family_index = graphics_queue_family_index;
resultCtx->maxUniformBufferRange = max_uniform_buffer_range;
resultCtx->minUniformBufferOffsetAlignment = min_uniform_buffer_offset_alignment;
lookup_entry_points(resultCtx);
resultCtx->vertUboBuffer = create_ubo(resultCtx);
resultCtx->fragUboBuffer = create_ubo(resultCtx);
return resultCtx;
init_fail:
if (resultCtx != NULL)
f(resultCtx, malloc_d);
return NULL;
} // MOJOSHADER_vkCreateContext
void MOJOSHADER_vkMakeContextCurrent(MOJOSHADER_vkContext *_ctx)
{
ctx = _ctx;
} // MOJOSHADER_vkMakeContextCurrent
void MOJOSHADER_vkDestroyContext(MOJOSHADER_vkContext *_ctx)
{
MOJOSHADER_vkContext *current_ctx = ctx;
ctx = _ctx;
MOJOSHADER_vkBindProgram(NULL);
if (ctx->linker_cache)
hash_destroy(ctx->linker_cache);
ctx->vkDestroyBuffer(*ctx->logical_device,
ctx->vertUboBuffer->buffer,
NULL);
ctx->vkDestroyBuffer(*ctx->logical_device,
ctx->fragUboBuffer->buffer,
NULL);
ctx->vkFreeMemory(*ctx->logical_device,
ctx->vertUboBuffer->deviceMemory,
NULL);
ctx->vkFreeMemory(*ctx->logical_device,
ctx->fragUboBuffer->deviceMemory,
NULL);
ctx->free_fn(ctx->vertUboBuffer, ctx->malloc_data);
ctx->free_fn(ctx->fragUboBuffer, ctx->malloc_data);
ctx->free_fn(ctx, ctx->malloc_data);
ctx = ((current_ctx == _ctx) ? NULL : current_ctx);
} // MOJOSHADER_vkDestroyContext
MOJOSHADER_vkShader *MOJOSHADER_vkCompileShader(
const char *mainfn,
const unsigned char *tokenbuf,
const unsigned int bufsize,
const MOJOSHADER_swizzle *swiz,
const unsigned int swizcount,
const MOJOSHADER_samplerMap *smap,
const unsigned int smapcount
) {
MOJOSHADER_vkShader *shader;
const MOJOSHADER_parseData *pd = MOJOSHADER_parse(
"spirv", mainfn,
tokenbuf, bufsize,
swiz, swizcount,
smap, smapcount,
ctx->malloc_fn,
ctx->free_fn,
ctx->malloc_data
);
if (pd->error_count > 0)
{
set_error(pd->errors[0].error);
goto parse_shader_fail;
} // if
shader = (MOJOSHADER_vkShader *) ctx->malloc_fn(sizeof(MOJOSHADER_vkShader), ctx->malloc_data);
if (shader == NULL)
{
out_of_memory();
goto parse_shader_fail;
} // if
shader->parseData = pd;
shader->refcount = 1;
shader->tag = tagCounter++;
return shader;
parse_shader_fail:
MOJOSHADER_freeParseData(pd);
if (shader != NULL)
ctx->free_fn(shader, ctx->malloc_data);
return NULL;
} // MOJOSHADER_vkCompileShader
void MOJOSHADER_vkShaderAddRef(MOJOSHADER_vkShader *shader)
{
if (shader != NULL)
shader->refcount++;
} // MOJOShader_vkShaderAddRef
void MOJOSHADER_vkDeleteShader(MOJOSHADER_vkShader *shader)
{
if (shader != NULL)
{
if (shader->refcount > 1)
shader->refcount--;
else
{
// See if this was bound as an unlinked program anywhere...
if (ctx->linker_cache)
{
const void *key = NULL;
void *iter = NULL;
int morekeys = hash_iter_keys(ctx->linker_cache, &key, &iter);
while (morekeys)
{
const BoundShaders *shaders = (const BoundShaders *) key;
// Do this here so we don't confuse the iteration by removing...
morekeys = hash_iter_keys(ctx->linker_cache, &key, &iter);
if ((shaders->vertex == shader) || (shaders->fragment == shader))
{
// Deletes the linked program
hash_remove(ctx->linker_cache, shaders);
} // if
} // while
} // if
MOJOSHADER_freeParseData(shader->parseData);
ctx->free_fn(shader, ctx->malloc_data);
} // else
} // if
} // MOJOSHADER_vkDeleteShader
const MOJOSHADER_parseData *MOJOSHADER_vkGetShaderParseData(
MOJOSHADER_vkShader *shader
) {
return (shader != NULL) ? shader->parseData : NULL;
} // MOJOSHADER_vkGetShaderParseData
void MOJOSHADER_vkDeleteProgram(MOJOSHADER_vkProgram *p)
{
if (p->vertexModule != VK_NULL_HANDLE)
ctx->vkDestroyShaderModule(*ctx->logical_device, p->vertexModule, NULL);
if (p->pixelModule != VK_NULL_HANDLE)
ctx->vkDestroyShaderModule(*ctx->logical_device, p->pixelModule, NULL);
ctx->free_fn(p, ctx->malloc_data);
} // MOJOSHADER_vkDeleteProgram
MOJOSHADER_vkProgram *MOJOSHADER_vkLinkProgram(MOJOSHADER_vkShader *vshader,
MOJOSHADER_vkShader *pshader)
{
MOJOSHADER_vkProgram *result;
if ((vshader == NULL) && (pshader == NULL))
return NULL;
result = ctx->malloc_fn(sizeof (MOJOSHADER_vkProgram), ctx->malloc_data);
if (result == NULL)
{
out_of_memory();
return NULL;
} // if
MOJOSHADER_spirv_link_attributes(vshader->parseData, pshader->parseData);
result->vertexModule = compile_shader(vshader);
result->pixelModule = compile_shader(pshader);
result->vertexShader = vshader;
result->pixelShader = pshader;
if (result->vertexModule == VK_NULL_HANDLE
|| result->pixelModule == VK_NULL_HANDLE)
{
MOJOSHADER_vkDeleteProgram(result);
return NULL;
}
return result;
} // MOJOSHADER_vkLinkProgram
void MOJOSHADER_vkBindProgram(MOJOSHADER_vkProgram *p)
{
ctx->bound_program = p;
} // MOJOSHADER_vkBindProgram
void MOJOSHADER_vkBindShaders(MOJOSHADER_vkShader *vshader,
MOJOSHADER_vkShader *pshader)
{
if (ctx->linker_cache == NULL)
{
ctx->linker_cache = hash_create(NULL, hash_shaders, match_shaders,
nuke_shaders, 0, ctx->malloc_fn,
ctx->free_fn, ctx->malloc_data);
if (ctx->linker_cache == NULL)
{
out_of_memory();
return;
} // if
} // if
MOJOSHADER_vkProgram *program = NULL;
BoundShaders shaders;
shaders.vertex = vshader;
shaders.fragment = pshader;
const void *val = NULL;
if (hash_find(ctx->linker_cache, &shaders, &val))
program = (MOJOSHADER_vkProgram *) val;
else
{
program = MOJOSHADER_vkLinkProgram(vshader, pshader);
if (program == NULL)
return;
BoundShaders *item = (BoundShaders *) ctx->malloc_fn(sizeof (BoundShaders),
ctx->malloc_data);
if (item == NULL)
{
MOJOSHADER_vkDeleteProgram(program);
return;
} // if
memcpy(item, &shaders, sizeof (BoundShaders));
if (hash_insert(ctx->linker_cache, item, program) != 1)
{
ctx->free_fn(item, ctx->malloc_data);
MOJOSHADER_vkDeleteProgram(program);
out_of_memory();
return;
} // if
} // else
assert(program != NULL);
ctx->bound_program = program;
} // MOJOSHADER_vkBindShaders
void MOJOSHADER_vkGetBoundShaders(MOJOSHADER_vkShader **vshader,
MOJOSHADER_vkShader **pshader)
{
if (vshader != NULL)
{
if (ctx->bound_program != NULL)
*vshader = ctx->bound_program->vertexShader;
else
*vshader = NULL;
} // if
if (pshader != NULL)
{
if (ctx->bound_program != NULL)
*pshader = ctx->bound_program->pixelShader;
else
*pshader = NULL;
} // if
} // MOJOSHADER_vkGetBoundShaders
void MOJOSHADER_vkMapUniformBufferMemory(float **vsf, int **vsi, unsigned char **vsb,
float **psf, int **psi, unsigned char **psb)
{
*vsf = ctx->vs_reg_file_f;
*vsi = ctx->vs_reg_file_i;
*vsb = ctx->vs_reg_file_b;
*psf = ctx->ps_reg_file_f;
*psi = ctx->ps_reg_file_i;
*psb = ctx->ps_reg_file_b;
} // MOJOSHADER_vkMapUniformBufferMemory
void MOJOSHADER_vkUnmapUniformBufferMemory()
{
/* Why is this function named unmap instead of update?
* the world may never know...
*/
assert(ctx->bound_program != NULL);
update_uniform_buffer(ctx->bound_program->vertexShader);
update_uniform_buffer(ctx->bound_program->pixelShader);
} // MOJOSHADER_vkUnmapUniformBufferMemory
void MOJOSHADER_vkGetUniformBuffers(VkBuffer *vbuf, unsigned long long *voff, unsigned long long *vsize,
VkBuffer *pbuf, unsigned long long *poff, unsigned long long *psize)
{
assert(ctx->bound_program != NULL);
*vbuf = get_uniform_buffer(ctx->bound_program->vertexShader);
*voff = get_uniform_offset(ctx->bound_program->vertexShader);
*vsize = get_uniform_size(ctx->bound_program->vertexShader);
*pbuf = get_uniform_buffer(ctx->bound_program->pixelShader);
*poff = get_uniform_offset(ctx->bound_program->pixelShader);
*psize = get_uniform_size(ctx->bound_program->pixelShader);
} // MOJOSHADER_vkGetUniformBuffers
void MOJOSHADER_vkEndFrame()
{
ctx->vertUboBuffer->dynamicOffset = 0;
ctx->vertUboBuffer->currentBlockSize = 0;
ctx->fragUboBuffer->dynamicOffset = 0;
ctx->fragUboBuffer->currentBlockSize = 0;
} // MOJOSHADER_VkEndFrame
int MOJOSHADER_vkGetVertexAttribLocation(MOJOSHADER_vkShader *vert,
MOJOSHADER_usage usage, int index)
{
int32_t i;
if (vert == NULL)
return -1;
for (i = 0; i < vert->parseData->attribute_count; i++)
{
if (vert->parseData->attributes[i].usage == usage &&
vert->parseData->attributes[i].index == index)
{
return i;
} // if
} // for
// failure
return -1;
} //MOJOSHADER_vkGetVertexAttribLocation
void MOJOSHADER_vkGetShaderModules(VkShaderModule *vmodule,
VkShaderModule *pmodule)
{
assert(ctx->bound_program != NULL);
if (vmodule != NULL)
*vmodule = ctx->bound_program->vertexModule;
if (pmodule != NULL)
*pmodule = ctx->bound_program->pixelModule;
} //MOJOSHADER_vkGetShaderModules
const char *MOJOSHADER_vkGetError(void)
{
return error_buffer;
} // MOJOSHADER_vkGetError
#endif /* SUPPORT_PROFILE_SPIRV */
// end of mojoshader_vulkan.c ...