sha256.c
branchgtkui
changeset 46 fe4f59680246
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sha256.c	Sun Nov 08 23:32:34 2015 -0500
@@ -0,0 +1,158 @@
+/*********************************************************************
+* Filename:   sha256.c
+* Author:     Brad Conte (brad AT bradconte.com)
+* Copyright:
+* Disclaimer: This code is presented "as is" without any guarantees.
+* Details:    Implementation of the SHA-256 hashing algorithm.
+              SHA-256 is one of the three algorithms in the SHA2
+              specification. The others, SHA-384 and SHA-512, are not
+              offered in this implementation.
+              Algorithm specification can be found here:
+               * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
+              This implementation uses little endian byte order.
+*********************************************************************/
+
+/*************************** HEADER FILES ***************************/
+#include <stdlib.h>
+#include <memory.h>
+#include "sha256.h"
+
+/****************************** MACROS ******************************/
+#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
+#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
+
+#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
+#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
+#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
+#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
+#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
+
+/**************************** VARIABLES *****************************/
+static const WORD k[64] = {
+	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
+	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
+	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
+	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
+	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
+	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
+	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
+	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
+};
+
+/*********************** FUNCTION DEFINITIONS ***********************/
+void sha256_transform(SHA256_CTX *ctx, const BYTE data[])
+{
+	WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
+
+	for (i = 0, j = 0; i < 16; ++i, j += 4)
+		m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
+	for ( ; i < 64; ++i)
+		m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
+
+	a = ctx->state[0];
+	b = ctx->state[1];
+	c = ctx->state[2];
+	d = ctx->state[3];
+	e = ctx->state[4];
+	f = ctx->state[5];
+	g = ctx->state[6];
+	h = ctx->state[7];
+
+	for (i = 0; i < 64; ++i) {
+		t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
+		t2 = EP0(a) + MAJ(a,b,c);
+		h = g;
+		g = f;
+		f = e;
+		e = d + t1;
+		d = c;
+		c = b;
+		b = a;
+		a = t1 + t2;
+	}
+
+	ctx->state[0] += a;
+	ctx->state[1] += b;
+	ctx->state[2] += c;
+	ctx->state[3] += d;
+	ctx->state[4] += e;
+	ctx->state[5] += f;
+	ctx->state[6] += g;
+	ctx->state[7] += h;
+}
+
+void sha256_init(SHA256_CTX *ctx)
+{
+	ctx->datalen = 0;
+	ctx->bitlen = 0;
+	ctx->state[0] = 0x6a09e667;
+	ctx->state[1] = 0xbb67ae85;
+	ctx->state[2] = 0x3c6ef372;
+	ctx->state[3] = 0xa54ff53a;
+	ctx->state[4] = 0x510e527f;
+	ctx->state[5] = 0x9b05688c;
+	ctx->state[6] = 0x1f83d9ab;
+	ctx->state[7] = 0x5be0cd19;
+}
+
+void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
+{
+	WORD i;
+
+	for (i = 0; i < len; ++i) {
+		ctx->data[ctx->datalen] = data[i];
+		ctx->datalen++;
+		if (ctx->datalen == 64) {
+			sha256_transform(ctx, ctx->data);
+			ctx->bitlen += 512;
+			ctx->datalen = 0;
+		}
+	}
+}
+
+void sha256_final(SHA256_CTX *ctx, BYTE hash[])
+{
+	WORD i;
+
+	i = ctx->datalen;
+
+	// Pad whatever data is left in the buffer.
+	if (ctx->datalen < 56) {
+		ctx->data[i++] = 0x80;
+		while (i < 56)
+			ctx->data[i++] = 0x00;
+	}
+	else {
+		ctx->data[i++] = 0x80;
+		while (i < 64)
+			ctx->data[i++] = 0x00;
+		sha256_transform(ctx, ctx->data);
+		memset(ctx->data, 0, 56);
+	}
+
+	// Append to the padding the total message's length in bits and transform.
+	ctx->bitlen += ctx->datalen * 8;
+	ctx->data[63] = ctx->bitlen;
+	ctx->data[62] = ctx->bitlen >> 8;
+	ctx->data[61] = ctx->bitlen >> 16;
+	ctx->data[60] = ctx->bitlen >> 24;
+	ctx->data[59] = ctx->bitlen >> 32;
+	ctx->data[58] = ctx->bitlen >> 40;
+	ctx->data[57] = ctx->bitlen >> 48;
+	ctx->data[56] = ctx->bitlen >> 56;
+	sha256_transform(ctx, ctx->data);
+
+	// Since this implementation uses little endian byte ordering and SHA uses big endian,
+	// reverse all the bytes when copying the final state to the output hash.
+	for (i = 0; i < 4; ++i) {
+		hash[i]      = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
+		hash[i + 4]  = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
+		hash[i + 8]  = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
+		hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
+		hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
+		hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
+		hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
+		hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
+	}
+}