/** * MojoShader; generate shader programs from bytecode of compiled * Direct3D shaders. * * Please see the file LICENSE.txt in the source's root directory. * * This file written by Ryan C. Gordon. */ // !!! FIXME: I keep changing coding styles for symbols and typedefs. // !!! FIXME: do DEF* opcodes have to come before instructions? // !!! FIXME: my reading of the msdn spec suggests no, but it sounds like // !!! FIXME: something they'd require. DCL_* _does_ have to be first. // Shader bytecode format is described at MSDN: // http://msdn2.microsoft.com/en-us/library/ms800307.aspx #include #include #include #include #include #include "mojoshader.h" // This is the highest shader version we currently support. #define MAX_SHADER_MAJOR 3 #define MAX_SHADER_MINOR 0 // If SUPPORT_PROFILE_* isn't defined, we assume an implicit desire to support. // You get all the profiles unless you go out of your way to disable them. #ifndef SUPPORT_PROFILE_D3D #define SUPPORT_PROFILE_D3D 1 #endif #ifndef SUPPORT_PROFILE_PASSTHROUGH #define SUPPORT_PROFILE_PASSTHROUGH 1 #endif #ifndef SUPPORT_PROFILE_GLSL #define SUPPORT_PROFILE_GLSL 1 #endif // Get basic wankery out of the way here... typedef unsigned int uint; // this is a printf() helper. don't use for code. #ifdef _MSC_VER #define snprintf _snprintf typedef unsigned __int8 uint8; typedef unsigned __int32 uint32; typedef unsigned __int32 int32; #else #include typedef uint8_t uint8; typedef uint32_t uint32; typedef int32_t int32; #endif #ifdef __GNUC__ #define ISPRINTF(x,y) __attribute__((format (printf, x, y))) #else #define ISPRINTF(x,y) #endif #define STATICARRAYLEN(x) ( (sizeof ((x))) / (sizeof ((x)[0])) ) #ifdef _WINDOWS // !!! FIXME: bleh const char *endline_str = "\r\n"; #else const char *endline_str = "\n"; #endif // we need to reference this by explicit value occasionally. #define OPCODE_RET 28 // Special-case return values from the parsing pipeline... #define FAIL (-1) #define NOFAIL (-2) #define END_OF_STREAM (-3) // Byteswap magic... #if ((defined __GNUC__) && (defined __POWERPC__)) static inline uint32 SWAP32(uint32 x) { __asm__ __volatile__("lwbrx %0,0,%1" : "=r" (x) : "r" (&x)); return x; } // SWAP32 #elif defined(__POWERPC__) static inline uint32 SWAP32(uint32 x) { return ( (((x) >> 24) & 0x000000FF) | (((x) >> 8) & 0x0000FF00) | (((x) << 8) & 0x00FF0000) | (((x) << 24) & 0xFF000000) ); } // SWAP32 #else # define SWAP32(x) (x) #endif typedef enum { REG_TYPE_TEMP = 0, REG_TYPE_INPUT = 1, REG_TYPE_CONST = 2, REG_TYPE_ADDRESS = 3, REG_TYPE_TEXTURE = 3, // ALSO 3! REG_TYPE_RASTOUT = 4, REG_TYPE_ATTROUT = 5, REG_TYPE_TEXCRDOUT = 6, REG_TYPE_OUTPUT = 6, // ALSO 6! REG_TYPE_CONSTINT = 7, REG_TYPE_COLOROUT = 8, REG_TYPE_DEPTHOUT = 9, REG_TYPE_SAMPLER = 10, REG_TYPE_CONST2 = 11, REG_TYPE_CONST3 = 12, REG_TYPE_CONST4 = 13, REG_TYPE_CONSTBOOL = 14, REG_TYPE_LOOP = 15, REG_TYPE_TEMPFLOAT16 = 16, REG_TYPE_MISCTYPE = 17, REG_TYPE_LABEL = 18, REG_TYPE_PREDICATE = 19, REG_TYPE_MAX = 19 } RegisterType; typedef enum { TEXTURE_TYPE_2D = 2, TEXTURE_TYPE_CUBE = 3, TEXTURE_TYPE_VOLUME = 4, } TextureType; // predeclare. typedef struct Context Context; // one emit function for each opcode in each profile. typedef void (*emit_function)(Context *ctx); // one emit function for starting output in each profile. typedef void (*emit_start)(Context *ctx); // one emit function for ending output in each profile. typedef void (*emit_end)(Context *ctx); // one emit function for finalizing output in each profile. typedef void (*emit_finalize)(Context *ctx); // one emit function for global definitions in each profile. typedef void (*emit_global)(Context *ctx, RegisterType regtype, int regnum); // one emit function for uniforms in each profile. typedef void (*emit_uniform)(Context *ctx, RegisterType regtype, int regnum); // one emit function for samplers in each profile. typedef void (*emit_sampler)(Context *ctx, int stage, TextureType ttype); // one emit function for attributes in each profile. typedef void (*emit_attribute)(Context *ctx, RegisterType regtype, int regnum, MOJOSHADER_usage usage, int index, int wmask); // one args function for each possible sequence of opcode arguments. typedef int (*args_function)(Context *ctx); // one state function for each opcode where we have state machine updates. typedef void (*state_function)(Context *ctx); typedef struct { const char *name; emit_start start_emitter; emit_end end_emitter; emit_global global_emitter; emit_uniform uniform_emitter; emit_sampler sampler_emitter; emit_attribute attribute_emitter; emit_finalize finalize_emitter; } Profile; typedef enum { RASTOUT_TYPE_POSITION = 0, RASTOUT_TYPE_FOG = 1, RASTOUT_TYPE_POINT_SIZE = 2, RASTOUT_TYPE_MAX = 2 } RastOutType; typedef enum { MISCTYPE_TYPE_POSITION = 0, MISCTYPE_TYPE_FACE = 1, MISCTYPE_TYPE_MAX = 1 } MiscTypeType; // A simple linked list of strings, so we can build the final output without // realloc()ing for each new line, and easily insert lines into the middle // of the output without much trouble. typedef struct OutputListNode { char *str; struct OutputListNode *next; } OutputListNode; typedef struct OutputList { OutputListNode head; OutputListNode *tail; } OutputList; typedef struct RegisterList { RegisterType regtype; int regnum; MOJOSHADER_usage usage; int index; int writemask; int misc; struct RegisterList *next; } RegisterList; // result modifiers. #define MOD_SATURATE 0x01 #define MOD_PP 0x02 #define MOD_CENTROID 0x04 // source modifiers. typedef enum { SRCMOD_NONE, SRCMOD_NEGATE, SRCMOD_BIAS, SRCMOD_BIASNEGATE, SRCMOD_SIGN, SRCMOD_SIGNNEGATE, SRCMOD_COMPLEMENT, SRCMOD_X2, SRCMOD_X2NEGATE, SRCMOD_DZ, SRCMOD_DW, SRCMOD_ABS, SRCMOD_ABSNEGATE, SRCMOD_NOT, SRCMOD_TOTAL } SourceMod; typedef struct { const uint32 *token; // this is the unmolested token in the stream. int regnum; int relative; int writemask; // xyzw or rgba (all four, not split out). int writemask0; // x or red int writemask1; // y or green int writemask2; // z or blue int writemask3; // w or alpha int result_mod; int result_shift; RegisterType regtype; } DestArgInfo; typedef struct { const uint32 *token; // this is the unmolested token in the stream. int regnum; int swizzle; // xyzw (all four, not split out). int swizzle_x; int swizzle_y; int swizzle_z; int swizzle_w; SourceMod src_mod; RegisterType regtype; int relative; RegisterType relative_regtype; int relative_regnum; int relative_component; } SourceArgInfo; typedef enum { // Specific to GLSL profile... CTX_FLAGS_GLSL_LIT_OPCODE = (1 << 0), CTX_FLAGS_MASK = 0xFFFFFFFF } ContextFlags; #define SCRATCH_BUFFER_SIZE 128 #define SCRATCH_BUFFERS 16 // !!! FIXME: the scratch buffers make Context pretty big. // !!! FIXME: might be worth having one set of static scratch buffers that // !!! FIXME: are mutex protected? // Context...this is state that changes as we parse through a shader... struct Context { MOJOSHADER_malloc malloc; MOJOSHADER_free free; void *malloc_data; const uint32 *tokens; uint32 tokencount; OutputList *output; OutputList globals; OutputList helpers; OutputList subroutines; OutputList mainline_intro; OutputList mainline; OutputList ignore; OutputList *output_stack[2]; uint8 *output_bytes; // can be used instead of the OutputLists. int indent_stack[2]; int output_stack_len; int output_len; // total strlen; prevents walking the lists just to malloc. int indent; const char *endline; int endline_len; const char *failstr; char scratch[SCRATCH_BUFFERS][SCRATCH_BUFFER_SIZE]; int scratchidx; // current scratch buffer. int profileid; const Profile *profile; MOJOSHADER_shaderType shader_type; uint8 major_ver; uint8 minor_ver; DestArgInfo dest_arg; SourceArgInfo source_args[5]; SourceArgInfo predicate_arg; // for predicated instructions. uint32 dwords[4]; int instruction_count; uint32 instruction_controls; uint32 previous_opcode; ContextFlags flags; int predicated; int loops; int reps; int cmps; RegisterList used_registers; RegisterList defined_registers; int uniform_count; RegisterList uniforms; int attribute_count; RegisterList attributes; int sampler_count; RegisterList samplers; }; // Convenience functions for allocators... static MOJOSHADER_parseData out_of_mem_data = { "Out of memory", 0, 0, 0, 0, MOJOSHADER_TYPE_UNKNOWN, 0, 0, 0, 0 }; static const char *out_of_mem_str = "Out of memory"; static inline int out_of_memory(Context *ctx) { if (ctx->failstr == NULL) ctx->failstr = out_of_mem_str; // fail() would call malloc(). return FAIL; } // out_of_memory static inline void *Malloc(Context *ctx, const int len) { void *retval = ctx->malloc(len, ctx->malloc_data); if (retval == NULL) out_of_memory(ctx); return retval; } // Malloc static inline void Free(Context *ctx, void *ptr) { if (ptr != NULL) // check for NULL in case of dumb free() impl. ctx->free(ptr, ctx->malloc_data); } // Free // jump between output sections in the context... static inline void push_output(Context *ctx, OutputList *section) { assert(ctx->output_stack_len < STATICARRAYLEN(ctx->output_stack)); ctx->output_stack[ctx->output_stack_len] = ctx->output; ctx->indent_stack[ctx->output_stack_len] = ctx->indent; ctx->output_stack_len++; ctx->output = section; ctx->indent = 0; } // push_output static inline void pop_output(Context *ctx) { assert(ctx->output_stack_len > 0); ctx->output_stack_len--; ctx->output = ctx->output_stack[ctx->output_stack_len]; ctx->indent = ctx->indent_stack[ctx->output_stack_len]; } // pop_output // Shader model version magic... static inline uint32 ver_ui32(const uint8 major, const uint8 minor) { return ( (((uint32) major) << 16) | (((minor) == 0xFF) ? 0 : (minor)) ); } // version_ui32 static inline int shader_version_supported(const uint8 maj, const uint8 min) { return (ver_ui32(maj,min) <= ver_ui32(MAX_SHADER_MAJOR, MAX_SHADER_MINOR)); } // shader_version_supported static inline int shader_version_atleast(const Context *ctx, const uint8 maj, const uint8 min) { return (ver_ui32(ctx->major_ver, ctx->minor_ver) >= ver_ui32(maj, min)); } // shader_version_atleast static inline int shader_is_pixel(const Context *ctx) { return (ctx->shader_type == MOJOSHADER_TYPE_PIXEL); } // shader_is_pixel static inline int shader_is_vertex(const Context *ctx) { return (ctx->shader_type == MOJOSHADER_TYPE_VERTEX); } // shader_is_vertex // Bit arrays (for storing large arrays of booleans... static inline char *get_scratch_buffer(Context *ctx) { ctx->scratchidx = (ctx->scratchidx + 1) % SCRATCH_BUFFERS; return ctx->scratch[ctx->scratchidx]; } // get_scratch_buffer static inline int isfail(const Context *ctx) { return (ctx->failstr != NULL); } // isfail static int failf(Context *ctx, const char *fmt, ...) ISPRINTF(2,3); static int failf(Context *ctx, const char *fmt, ...) { if (ctx->failstr == NULL) // don't change existing error. { char *scratch = get_scratch_buffer(ctx); va_list ap; va_start(ap, fmt); const int len = vsnprintf(scratch, SCRATCH_BUFFER_SIZE, fmt, ap); va_end(ap); char *failstr = (char *) Malloc(ctx, len + 1); if (failstr != NULL) { // see comments about scratch buffer overflow in output_line(). if (len < SCRATCH_BUFFER_SIZE) strcpy(failstr, scratch); // copy it over. else { va_start(ap, fmt); vsnprintf(failstr, len + 1, fmt, ap); // rebuild it. va_end(ap); } // else ctx->failstr = failstr; } // if } // if return FAIL; } // failf static inline int fail(Context *ctx, const char *reason) { return failf(ctx, "%s", reason); } // fail static int output_line(Context *ctx, const char *fmt, ...) ISPRINTF(2,3); static int output_line(Context *ctx, const char *fmt, ...) { OutputListNode *item = NULL; if (isfail(ctx)) return FAIL; // we failed previously, don't go on... char *scratch = get_scratch_buffer(ctx); const int indent = ctx->indent; if (indent > 0) memset(scratch, '\t', indent); va_list ap; va_start(ap, fmt); const int len = vsnprintf(scratch+indent, SCRATCH_BUFFER_SIZE-indent, fmt, ap) + indent; va_end(ap); item = (OutputListNode *) Malloc(ctx, sizeof (OutputListNode)); if (item == NULL) return FAIL; item->str = (char *) Malloc(ctx, len + 1); if (item->str == NULL) { Free(ctx, item); return FAIL; } // if // If we overflowed our scratch buffer, that's okay. We were going to // allocate anyhow...the scratch buffer just lets us avoid a second // run of vsnprintf(). if (len < SCRATCH_BUFFER_SIZE) strcpy(item->str, scratch); // copy it over. else { if (indent > 0) memset(item->str, '\t', indent); va_start(ap, fmt); vsnprintf(item->str+indent, len + 1, fmt, ap); // rebuild it. va_end(ap); } // else item->next = NULL; ctx->output->tail->next = item; ctx->output->tail = item; ctx->output_len += len + ctx->endline_len; return 0; } // output_line // this is just to stop gcc whining. static inline int output_blank_line(Context *ctx) { return output_line(ctx, "%s", ""); } // output_blank_line // !!! FIXME: this is sort of nasty. static void floatstr(Context *ctx, char *buf, size_t bufsize, float f, int leavedecimal) { const size_t len = snprintf(buf, bufsize, "%f", f); if ((len+2) >= bufsize) fail(ctx, "BUG: internal buffer is too small"); else { char *end = buf + len; char *ptr = strchr(buf, '.'); if (ptr == NULL) { if (leavedecimal) strcat(buf, ".0"); return; // done. } // if while (--end != ptr) { if (*end != '0') { end++; break; } // if } // while if ((leavedecimal) && (end == ptr)) end += 2; *end = '\0'; // chop extra '0' or all decimal places off. } // else } // floatstr // Deal with register lists... !!! FIXME: I sort of hate this. static void free_reglist(MOJOSHADER_free f, void *d, RegisterList *item) { while (item != NULL) { RegisterList *next = item->next; f(item, d); item = next; } // while } // free_reglist static inline uint32 reg_to_ui32(const RegisterType regtype, const int regnum) { return ( ((uint32) regtype) | (((uint32) regnum) << 16) ); } // reg_to_uint32 static RegisterList *reglist_insert(Context *ctx, RegisterList *prev, const RegisterType regtype, const int regnum) { const uint32 newval = reg_to_ui32(regtype, regnum); RegisterList *item = prev->next; while (item != NULL) { const uint32 val = reg_to_ui32(item->regtype, item->regnum); if (newval == val) return item; // already set, so we're done. else if (newval < val) // insert it here. break; else // if (newval > val) { // keep going, we're not to the insertion point yet. prev = item; item = item->next; } // else } // while // we need to insert an entry after (prev). item = (RegisterList *) Malloc(ctx, sizeof (RegisterList)); if (item != NULL) { item->regtype = regtype; item->regnum = regnum; item->usage = MOJOSHADER_USAGE_UNKNOWN; item->index = 0; item->writemask = 0; item->misc = 0; item->next = prev->next; prev->next = item; } // if return item; } // reglist_insert static RegisterList *reglist_find(RegisterList *prev, const RegisterType rtype, const int regnum) { const uint32 newval = reg_to_ui32(rtype, regnum); RegisterList *item = prev->next; while (item != NULL) { const uint32 val = reg_to_ui32(item->regtype, item->regnum); if (newval == val) return item; // here it is. else if (newval < val) // should have been here if it existed. return NULL; else // if (newval > val) { // keep going, we're not to the insertion point yet. prev = item; item = item->next; } // else } // while return NULL; // wasn't in the list. } // reglist_find static inline const RegisterList *reglist_exists(RegisterList *prev, const RegisterType regtype, const int regnum) { return (reglist_find(prev, regtype, regnum)); } // reglist_exists static inline void set_used_register(Context *ctx, const RegisterType regtype, const int regnum) { reglist_insert(ctx, &ctx->used_registers, regtype, regnum); } // set_used_register static inline int get_used_register(Context *ctx, const RegisterType regtype, const int regnum) { return (reglist_exists(&ctx->used_registers, regtype, regnum) != NULL); } // get_used_register static inline void set_defined_register(Context *ctx, const RegisterType rtype, const int regnum) { reglist_insert(ctx, &ctx->defined_registers, rtype, regnum); } // set_defined_register static inline int get_defined_register(Context *ctx, const RegisterType rtype, const int regnum) { return (reglist_exists(&ctx->defined_registers, rtype, regnum) != NULL); } // get_defined_register static const RegisterList *declared_attribute(Context *ctx, const MOJOSHADER_usage usage, const int index) { const RegisterList *item = ctx->attributes.next; while (item != NULL) { if ((item->usage == usage) && (item->index == index)) return item; item = item->next; } // while return NULL; } // declared_attribute static void add_attribute_register(Context *ctx, const RegisterType rtype, const int regnum, const MOJOSHADER_usage usage, const int index, const int writemask) { RegisterList *item = reglist_insert(ctx, &ctx->attributes, rtype, regnum); item->usage = usage; item->index = index; item->writemask = writemask; } // add_attribute_register static inline void add_sampler(Context *ctx, const RegisterType rtype, const int regnum, const TextureType ttype) { RegisterList *item = reglist_insert(ctx, &ctx->samplers, rtype, regnum); item->index = (int) ttype; } // add_sampler static inline int replicate_swizzle(const int swizzle) { return ( (((swizzle >> 0) & 0x3) == ((swizzle >> 2) & 0x3)) && (((swizzle >> 2) & 0x3) == ((swizzle >> 4) & 0x3)) && (((swizzle >> 4) & 0x3) == ((swizzle >> 6) & 0x3)) ); } // replicate_swizzle static inline int vecsize_from_writemask(const int m) { return (m & 1) + ((m >> 1) & 1) + ((m >> 2) & 1) + ((m >> 3) & 1); } // vecsize_from_writemask // D3D stuff that's used in more than just the d3d profile... static const char swizzle_channels[] = { 'x', 'y', 'z', 'w' }; static const char *usagestrs[] = { "_position", "_blendweight", "_blendindices", "_normal", "_psize", "_texcoord", "_tangent", "_binormal", "_tessfactor", "_positiont", "_color", "_fog", "_depth", "_sample" }; static const char *get_D3D_register_string(Context *ctx, RegisterType regtype, int regnum, char *regnum_str, size_t regnum_size) { const char *retval = NULL; int has_number = 1; switch (regtype) { case REG_TYPE_TEMP: retval = "r"; break; case REG_TYPE_INPUT: retval = "v"; break; case REG_TYPE_CONST: retval = "c"; break; case REG_TYPE_ADDRESS: // (or REG_TYPE_TEXTURE, same value.) retval = shader_is_vertex(ctx) ? "a" : "t"; break; case REG_TYPE_RASTOUT: switch ((RastOutType) regnum) { case RASTOUT_TYPE_POSITION: retval = "oPos"; break; case RASTOUT_TYPE_FOG: retval = "oFog"; break; case RASTOUT_TYPE_POINT_SIZE: retval = "oPts"; break; } // switch has_number = 0; break; case REG_TYPE_ATTROUT: retval = "oD"; break; case REG_TYPE_OUTPUT: // (or REG_TYPE_TEXCRDOUT, same value.) if (shader_is_vertex(ctx) && shader_version_atleast(ctx, 3, 0)) retval = "o"; else retval = "oT"; break; case REG_TYPE_CONSTINT: retval = "i"; break; case REG_TYPE_COLOROUT: retval = "oC"; break; case REG_TYPE_DEPTHOUT: retval = "oDepth"; has_number = 0; break; case REG_TYPE_SAMPLER: retval = "s"; break; case REG_TYPE_CONSTBOOL: retval = "b"; break; case REG_TYPE_LOOP: retval = "aL"; has_number = 0; break; case REG_TYPE_MISCTYPE: switch ((MiscTypeType) regnum) { case MISCTYPE_TYPE_POSITION: retval = "vPos"; break; case MISCTYPE_TYPE_FACE: retval = "vFace"; break; } // switch has_number = 0; break; case REG_TYPE_LABEL: retval = "l"; break; case REG_TYPE_PREDICATE: retval = "p"; break; //case REG_TYPE_TEMPFLOAT16: // !!! FIXME: don't know this asm string default: fail(ctx, "unknown register type"); retval = "???"; has_number = 0; break; } // switch if (has_number) snprintf(regnum_str, regnum_size, "%u", (uint) regnum); else regnum_str[0] = '\0'; return retval; } // get_D3D_register_string static inline const char *get_shader_type_string(Context *ctx) { if (shader_is_pixel(ctx)) return "ps"; else if (shader_is_vertex(ctx)) return "vs"; fail(ctx, "Unknown shader type."); return ""; } // get_shader_type_string #define AT_LEAST_ONE_PROFILE 0 #if !SUPPORT_PROFILE_D3D #define PROFILE_EMITTER_D3D(op) #else #undef AT_LEAST_ONE_PROFILE #define AT_LEAST_ONE_PROFILE 1 #define PROFILE_EMITTER_D3D(op) emit_D3D_##op, static const char *make_D3D_srcarg_string_in_buf(Context *ctx, const SourceArgInfo *arg, char *buf, size_t buflen) { const char *premod_str = ""; const char *postmod_str = ""; switch (arg->src_mod) { case SRCMOD_NEGATE: premod_str = "-"; break; case SRCMOD_BIASNEGATE: premod_str = "-"; // fall through. case SRCMOD_BIAS: postmod_str = "_bias"; break; case SRCMOD_SIGNNEGATE: premod_str = "-"; // fall through. case SRCMOD_SIGN: postmod_str = "_bx2"; break; case SRCMOD_COMPLEMENT: premod_str = "1-"; break; case SRCMOD_X2NEGATE: premod_str = "-"; // fall through. case SRCMOD_X2: postmod_str = "_x2"; break; case SRCMOD_DZ: postmod_str = "_dz"; break; case SRCMOD_DW: postmod_str = "_dw"; break; case SRCMOD_ABSNEGATE: premod_str = "-"; // fall through. case SRCMOD_ABS: postmod_str = "_abs"; break; case SRCMOD_NOT: premod_str = "!"; break; case SRCMOD_NONE: case SRCMOD_TOTAL: break; // stop compiler whining. } // switch char regnum_str[16]; const char *regtype_str = get_D3D_register_string(ctx, arg->regtype, arg->regnum, regnum_str, sizeof (regnum_str)); if (regtype_str == NULL) { fail(ctx, "Unknown source register type."); return ""; } // if const char *rel_lbracket = ""; const char *rel_rbracket = ""; char rel_swizzle[4] = { '\0' }; char rel_regnum_str[16] = { '\0' }; const char *rel_regtype_str = ""; if (arg->relative) { rel_swizzle[0] = '.'; rel_swizzle[1] = swizzle_channels[arg->relative_component]; rel_swizzle[2] = '\0'; rel_lbracket = "["; rel_rbracket = "]"; rel_regtype_str = get_D3D_register_string(ctx, arg->relative_regtype, arg->relative_regnum, rel_regnum_str, sizeof (rel_regnum_str)); if (regtype_str == NULL) { fail(ctx, "Unknown relative source register type."); return ""; } // if } // if char swizzle_str[6]; int i = 0; if (arg->swizzle != 0xE4) // 0xE4 == 11100100 ... 3 2 1 0. No swizzle. { swizzle_str[i++] = '.'; swizzle_str[i++] = swizzle_channels[arg->swizzle_x]; swizzle_str[i++] = swizzle_channels[arg->swizzle_y]; swizzle_str[i++] = swizzle_channels[arg->swizzle_z]; swizzle_str[i++] = swizzle_channels[arg->swizzle_w]; // .xyzz is the same as .xyz, .z is the same as .zzzz, etc. while (swizzle_str[i-1] == swizzle_str[i-2]) i--; } // if swizzle_str[i] = '\0'; assert(i < sizeof (swizzle_str)); snprintf(buf, buflen, "%s%s%s%s%s%s%s%s%s%s", premod_str, regtype_str, regnum_str, postmod_str, rel_lbracket, rel_regtype_str, rel_regnum_str, rel_swizzle, rel_rbracket, swizzle_str); // !!! FIXME: make sure the scratch buffer was large enough. return buf; } // make_D3D_srcarg_string_in_buf static const char *make_D3D_destarg_string(Context *ctx) { const DestArgInfo *arg = &ctx->dest_arg; const char *result_shift_str = ""; switch (arg->result_shift) { case 0x1: result_shift_str = "_x2"; break; case 0x2: result_shift_str = "_x4"; break; case 0x3: result_shift_str = "_x8"; break; case 0xD: result_shift_str = "_d8"; break; case 0xE: result_shift_str = "_d4"; break; case 0xF: result_shift_str = "_d2"; break; } // switch const char *sat_str = (arg->result_mod & MOD_SATURATE) ? "_sat" : ""; const char *pp_str = (arg->result_mod & MOD_PP) ? "_pp" : ""; const char *cent_str = (arg->result_mod & MOD_CENTROID) ? "_centroid" : ""; char regnum_str[16]; const char *regtype_str = get_D3D_register_string(ctx, arg->regtype, arg->regnum, regnum_str, sizeof (regnum_str)); if (regtype_str == NULL) { fail(ctx, "Unknown destination register type."); return ""; } // if char writemask_str[6]; int i = 0; if (arg->writemask != 0xF) // 0xF == 1111. No explicit mask. { writemask_str[i++] = '.'; if (arg->writemask0) writemask_str[i++] = 'x'; if (arg->writemask1) writemask_str[i++] = 'y'; if (arg->writemask2) writemask_str[i++] = 'z'; if (arg->writemask3) writemask_str[i++] = 'w'; } // if writemask_str[i] = '\0'; assert(i < sizeof (writemask_str)); const char *pred_left = ""; const char *pred_right = ""; char pred[32] = { '\0' }; if (ctx->predicated) { pred_left = "("; pred_right = ") "; make_D3D_srcarg_string_in_buf(ctx, &ctx->predicate_arg, pred, sizeof (pred)); } // if // may turn out something like "_x2_sat_pp_centroid (!p0.x) r0.xyzw" ... char *retval = get_scratch_buffer(ctx); snprintf(retval, SCRATCH_BUFFER_SIZE, "%s%s%s%s %s%s%s%s%s%s", result_shift_str, sat_str, pp_str, cent_str, pred_left, pred, pred_right, regtype_str, regnum_str, writemask_str); // !!! FIXME: make sure the scratch buffer was large enough. return retval; } // make_D3D_destarg_string static const char *make_D3D_srcarg_string(Context *ctx, const int idx) { if (idx >= STATICARRAYLEN(ctx->source_args)) { fail(ctx, "Too many source args"); return ""; } // if const SourceArgInfo *arg = &ctx->source_args[idx]; char *buf = get_scratch_buffer(ctx); return make_D3D_srcarg_string_in_buf(ctx, arg, buf, SCRATCH_BUFFER_SIZE); } // make_D3D_srcarg_string static void emit_D3D_start(Context *ctx) { const uint major = (uint) ctx->major_ver; const uint minor = (uint) ctx->minor_ver; const char *shadertype_str = get_shader_type_string(ctx); char minor_str[16]; if (minor == 0xFF) strcpy(minor_str, "sw"); else if (minor == 0x1) // apparently this is "vs_2_x". Weird. strcpy(minor_str, "x"); else snprintf(minor_str, sizeof (minor_str), "%u", (uint) minor); output_line(ctx, "%s_%u_%s", shadertype_str, major, minor_str); } // emit_D3D_start static void emit_D3D_end(Context *ctx) { output_line(ctx, "end"); } // emit_D3D_end static void emit_D3D_finalize(Context *ctx) { // no-op. } // emit_D3D_finalize static void emit_D3D_global(Context *ctx, RegisterType regtype, int regnum) { // no-op. } // emit_D3D_global static void emit_D3D_uniform(Context *ctx, RegisterType regtype, int regnum) { // no-op. } // emit_D3D_uniform static void emit_D3D_sampler(Context *ctx, int stage, TextureType ttype) { // no-op. } // emit_D3D_sampler static void emit_D3D_attribute(Context *ctx, RegisterType regtype, int regnum, MOJOSHADER_usage usage, int index, int wmask) { // no-op. } // emit_D3D_attribute static void emit_D3D_RESERVED(Context *ctx) { // do nothing; fails in the state machine. } // emit_D3D_RESERVED // Generic D3D opcode emitters. A list of macros generate all the entry points // that call into these... static char *lowercase(char *dst, const char *src) { int i = 0; do { const char ch = src[i]; dst[i] = (((ch >= 'A') && (ch <= 'Z')) ? (ch - ('A' - 'a')) : ch); } while (src[i++]); return dst; } // lowercase static void emit_D3D_opcode_d(Context *ctx, const char *opcode) { const char *dst0 = make_D3D_destarg_string(ctx); opcode = lowercase(get_scratch_buffer(ctx), opcode); output_line(ctx, "%s%s", opcode, dst0); } // emit_D3D_opcode_d static void emit_D3D_opcode_s(Context *ctx, const char *opcode) { const char *src0 = make_D3D_srcarg_string(ctx, 0); opcode = lowercase(get_scratch_buffer(ctx), opcode); output_line(ctx, "%s %s", opcode, src0); } // emit_D3D_opcode_s static void emit_D3D_opcode_ss(Context *ctx, const char *opcode) { const char *src0 = make_D3D_srcarg_string(ctx, 0); const char *src1 = make_D3D_srcarg_string(ctx, 1); opcode = lowercase(get_scratch_buffer(ctx), opcode); output_line(ctx, "%s %s, %s", opcode, src0, src1); } // emit_D3D_opcode_ss static void emit_D3D_opcode_ds(Context *ctx, const char *opcode) { const char *dst0 = make_D3D_destarg_string(ctx); const char *src0 = make_D3D_srcarg_string(ctx, 0); opcode = lowercase(get_scratch_buffer(ctx), opcode); output_line(ctx, "%s%s, %s", opcode, dst0, src0); } // emit_D3D_opcode_ds static void emit_D3D_opcode_dss(Context *ctx, const char *opcode) { const char *dst0 = make_D3D_destarg_string(ctx); const char *src0 = make_D3D_srcarg_string(ctx, 0); const char *src1 = make_D3D_srcarg_string(ctx, 1); opcode = lowercase(get_scratch_buffer(ctx), opcode); output_line(ctx, "%s%s, %s, %s", opcode, dst0, src0, src1); } // emit_D3D_opcode_dss static void emit_D3D_opcode_dsss(Context *ctx, const char *opcode) { const char *dst0 = make_D3D_destarg_string(ctx); const char *src0 = make_D3D_srcarg_string(ctx, 0); const char *src1 = make_D3D_srcarg_string(ctx, 1); const char *src2 = make_D3D_srcarg_string(ctx, 2); opcode = lowercase(get_scratch_buffer(ctx), opcode); output_line(ctx, "%s%s, %s, %s, %s", opcode, dst0, src0, src1, src2); } // emit_D3D_opcode_dsss static void emit_D3D_opcode_dssss(Context *ctx, const char *opcode) { const char *dst0 = make_D3D_destarg_string(ctx); const char *src0 = make_D3D_srcarg_string(ctx, 0); const char *src1 = make_D3D_srcarg_string(ctx, 1); const char *src2 = make_D3D_srcarg_string(ctx, 2); const char *src3 = make_D3D_srcarg_string(ctx, 3); opcode = lowercase(get_scratch_buffer(ctx), opcode); output_line(ctx,"%s%s, %s, %s, %s, %s",opcode,dst0,src0,src1,src2,src3); } // emit_D3D_opcode_dssss static void emit_D3D_opcode(Context *ctx, const char *opcode) { opcode = lowercase(get_scratch_buffer(ctx), opcode); output_line(ctx, "%s", opcode); } // emit_D3D_opcode_dssss #define EMIT_D3D_OPCODE_FUNC(op) \ static void emit_D3D_##op(Context *ctx) { \ emit_D3D_opcode(ctx, #op); \ } #define EMIT_D3D_OPCODE_D_FUNC(op) \ static void emit_D3D_##op(Context *ctx) { \ emit_D3D_opcode_d(ctx, #op); \ } #define EMIT_D3D_OPCODE_S_FUNC(op) \ static void emit_D3D_##op(Context *ctx) { \ emit_D3D_opcode_s(ctx, #op); \ } #define EMIT_D3D_OPCODE_SS_FUNC(op) \ static void emit_D3D_##op(Context *ctx) { \ emit_D3D_opcode_ss(ctx, #op); \ } #define EMIT_D3D_OPCODE_DS_FUNC(op) \ static void emit_D3D_##op(Context *ctx) { \ emit_D3D_opcode_ds(ctx, #op); \ } #define EMIT_D3D_OPCODE_DSS_FUNC(op) \ static void emit_D3D_##op(Context *ctx) { \ emit_D3D_opcode_dss(ctx, #op); \ } #define EMIT_D3D_OPCODE_DSSS_FUNC(op) \ static void emit_D3D_##op(Context *ctx) { \ emit_D3D_opcode_dsss(ctx, #op); \ } #define EMIT_D3D_OPCODE_DSSSS_FUNC(op) \ static void emit_D3D_##op(Context *ctx) { \ emit_D3D_opcode_dssss(ctx, #op); \ } EMIT_D3D_OPCODE_FUNC(NOP) EMIT_D3D_OPCODE_DS_FUNC(MOV) EMIT_D3D_OPCODE_DSS_FUNC(ADD) EMIT_D3D_OPCODE_DSS_FUNC(SUB) EMIT_D3D_OPCODE_DSSS_FUNC(MAD) EMIT_D3D_OPCODE_DSS_FUNC(MUL) EMIT_D3D_OPCODE_DS_FUNC(RCP) EMIT_D3D_OPCODE_DS_FUNC(RSQ) EMIT_D3D_OPCODE_DSS_FUNC(DP3) EMIT_D3D_OPCODE_DSS_FUNC(DP4) EMIT_D3D_OPCODE_DSS_FUNC(MIN) EMIT_D3D_OPCODE_DSS_FUNC(MAX) EMIT_D3D_OPCODE_DSS_FUNC(SLT) EMIT_D3D_OPCODE_DSS_FUNC(SGE) EMIT_D3D_OPCODE_DS_FUNC(EXP) EMIT_D3D_OPCODE_DS_FUNC(LOG) EMIT_D3D_OPCODE_DS_FUNC(LIT) EMIT_D3D_OPCODE_DSS_FUNC(DST) EMIT_D3D_OPCODE_DSSS_FUNC(LRP) EMIT_D3D_OPCODE_DS_FUNC(FRC) EMIT_D3D_OPCODE_DSS_FUNC(M4X4) EMIT_D3D_OPCODE_DSS_FUNC(M4X3) EMIT_D3D_OPCODE_DSS_FUNC(M3X4) EMIT_D3D_OPCODE_DSS_FUNC(M3X3) EMIT_D3D_OPCODE_DSS_FUNC(M3X2) EMIT_D3D_OPCODE_S_FUNC(CALL) EMIT_D3D_OPCODE_SS_FUNC(CALLNZ) EMIT_D3D_OPCODE_SS_FUNC(LOOP) EMIT_D3D_OPCODE_FUNC(RET) EMIT_D3D_OPCODE_FUNC(ENDLOOP) EMIT_D3D_OPCODE_S_FUNC(LABEL) EMIT_D3D_OPCODE_DSS_FUNC(POW) EMIT_D3D_OPCODE_DSS_FUNC(CRS) EMIT_D3D_OPCODE_DSSS_FUNC(SGN) EMIT_D3D_OPCODE_DS_FUNC(ABS) EMIT_D3D_OPCODE_DS_FUNC(NRM) EMIT_D3D_OPCODE_S_FUNC(REP) EMIT_D3D_OPCODE_FUNC(ENDREP) EMIT_D3D_OPCODE_S_FUNC(IF) EMIT_D3D_OPCODE_FUNC(ELSE) EMIT_D3D_OPCODE_FUNC(ENDIF) EMIT_D3D_OPCODE_FUNC(BREAK) EMIT_D3D_OPCODE_DS_FUNC(MOVA) EMIT_D3D_OPCODE_D_FUNC(TEXKILL) EMIT_D3D_OPCODE_DS_FUNC(TEXBEM) EMIT_D3D_OPCODE_DS_FUNC(TEXBEML) EMIT_D3D_OPCODE_DS_FUNC(TEXREG2AR) EMIT_D3D_OPCODE_DS_FUNC(TEXREG2GB) EMIT_D3D_OPCODE_DS_FUNC(TEXM3X2PAD) EMIT_D3D_OPCODE_DS_FUNC(TEXM3X2TEX) EMIT_D3D_OPCODE_DS_FUNC(TEXM3X3PAD) EMIT_D3D_OPCODE_DS_FUNC(TEXM3X3TEX) EMIT_D3D_OPCODE_DSS_FUNC(TEXM3X3SPEC) EMIT_D3D_OPCODE_DS_FUNC(TEXM3X3VSPEC) EMIT_D3D_OPCODE_DS_FUNC(EXPP) EMIT_D3D_OPCODE_DS_FUNC(LOGP) EMIT_D3D_OPCODE_DSSS_FUNC(CND) EMIT_D3D_OPCODE_DS_FUNC(TEXREG2RGB) EMIT_D3D_OPCODE_DS_FUNC(TEXDP3TEX) EMIT_D3D_OPCODE_DS_FUNC(TEXM3X2DEPTH) EMIT_D3D_OPCODE_DS_FUNC(TEXDP3) EMIT_D3D_OPCODE_DS_FUNC(TEXM3X3) EMIT_D3D_OPCODE_D_FUNC(TEXDEPTH) EMIT_D3D_OPCODE_DSSS_FUNC(CMP) EMIT_D3D_OPCODE_DSS_FUNC(BEM) EMIT_D3D_OPCODE_DSSS_FUNC(DP2ADD) EMIT_D3D_OPCODE_DS_FUNC(DSX) EMIT_D3D_OPCODE_DS_FUNC(DSY) EMIT_D3D_OPCODE_DSSSS_FUNC(TEXLDD) EMIT_D3D_OPCODE_DSS_FUNC(TEXLDL) EMIT_D3D_OPCODE_S_FUNC(BREAKP) // special cases for comparison opcodes... static const char *get_D3D_comparison_string(Context *ctx) { static const char *comps[] = { "", "_gt", "_eq", "_ge", "_lt", "_ne", "_le" }; if (ctx->instruction_controls >= STATICARRAYLEN(comps)) { fail(ctx, "unknown comparison control"); return ""; } // if return comps[ctx->instruction_controls]; } // get_D3D_comparison_string static void emit_D3D_BREAKC(Context *ctx) { char op[16]; snprintf(op, sizeof (op), "break%s", get_D3D_comparison_string(ctx)); emit_D3D_opcode_ss(ctx, op); } // emit_D3D_BREAKC static void emit_D3D_IFC(Context *ctx) { char op[16]; snprintf(op, sizeof (op), "if%s", get_D3D_comparison_string(ctx)); emit_D3D_opcode_ss(ctx, op); } // emit_D3D_IFC static void emit_D3D_SETP(Context *ctx) { char op[16]; snprintf(op, sizeof (op), "setp%s", get_D3D_comparison_string(ctx)); emit_D3D_opcode_dss(ctx, op); } // emit_D3D_SETP static void emit_D3D_DEF(Context *ctx) { const char *dst0 = make_D3D_destarg_string(ctx); const float *val = (const float *) ctx->dwords; // !!! FIXME: could be int? char val0[32]; char val1[32]; char val2[32]; char val3[32]; floatstr(ctx, val0, sizeof (val0), val[0], 0); floatstr(ctx, val1, sizeof (val1), val[1], 0); floatstr(ctx, val2, sizeof (val2), val[2], 0); floatstr(ctx, val3, sizeof (val3), val[3], 0); output_line(ctx, "def%s, %s, %s, %s, %s", dst0, val0, val1, val2, val3); } // emit_D3D_DEF static void emit_D3D_DEFI(Context *ctx) { const char *dst0 = make_D3D_destarg_string(ctx); const int32 *x = (const int32 *) ctx->dwords; output_line(ctx, "defi%s, %d, %d, %d, %d", dst0, (int) x[0], (int) x[1], (int) x[2], (int) x[3]); } // emit_D3D_DEFI static void emit_D3D_DEFB(Context *ctx) { const char *dst0 = make_D3D_destarg_string(ctx); output_line(ctx, "defb%s, %s", dst0, ctx->dwords[0] ? "true" : "false"); } // emit_D3D_DEFB static void emit_D3D_DCL(Context *ctx) { const char *dst0 = make_D3D_destarg_string(ctx); const DestArgInfo *arg = &ctx->dest_arg; const char *usage_str = ""; char index_str[16] = { '\0' }; if (arg->regtype == REG_TYPE_SAMPLER) { const TextureType ttype = (const TextureType) ctx->dwords[0]; switch (ttype) { case TEXTURE_TYPE_2D: usage_str = "_2d"; break; case TEXTURE_TYPE_CUBE: usage_str = "_cube"; break; case TEXTURE_TYPE_VOLUME: usage_str = "_volume"; break; default: fail(ctx, "unknown sampler texture type"); return; } // switch } // if else { const uint32 usage = ctx->dwords[0]; const uint32 index = ctx->dwords[1]; usage_str = usagestrs[usage]; if (index != 0) snprintf(index_str, sizeof (index_str), "%u", (uint) index); } // else output_line(ctx, "dcl%s%s%s", usage_str, index_str, dst0); } // emit_D3D_DCL static void emit_D3D_TEXCOORD(Context *ctx) { // this opcode looks and acts differently depending on the shader model. if (shader_version_atleast(ctx, 1, 4)) emit_D3D_opcode_ds(ctx, "texcrd"); else emit_D3D_opcode_d(ctx, "texcoord"); } // emit_D3D_TEXCOORD static void emit_D3D_TEX(Context *ctx) { // this opcode looks and acts differently depending on the shader model. if (shader_version_atleast(ctx, 1, 4)) emit_D3D_opcode_dss(ctx, "tex"); else emit_D3D_opcode_d(ctx, "texld"); } // emit_D3D_TEX static void emit_D3D_SINCOS(Context *ctx) { // this opcode needs extra registers for sm2 and lower. if (!shader_version_atleast(ctx, 3, 0)) emit_D3D_opcode_dsss(ctx, "sincos"); else emit_D3D_opcode_ds(ctx, "sincos"); } // emit_D3D_SINCOS #undef EMIT_D3D_OPCODE_FUNC #undef EMIT_D3D_OPCODE_D_FUNC #undef EMIT_D3D_OPCODE_S_FUNC #undef EMIT_D3D_OPCODE_SS_FUNC #undef EMIT_D3D_OPCODE_DS_FUNC #undef EMIT_D3D_OPCODE_DSS_FUNC #undef EMIT_D3D_OPCODE_DSSS_FUNC #undef EMIT_D3D_OPCODE_DSSSS_FUNC #endif // SUPPORT_PROFILE_D3D #if !SUPPORT_PROFILE_PASSTHROUGH #define PROFILE_EMITTER_PASSTHROUGH(op) #else #undef AT_LEAST_ONE_PROFILE #define AT_LEAST_ONE_PROFILE 1 #define PROFILE_EMITTER_PASSTHROUGH(op) emit_PASSTHROUGH_##op, static void emit_PASSTHROUGH_start(Context *ctx) { // just copy the whole token stream and make all other emitters no-ops. ctx->output_len = (ctx->tokencount * sizeof (uint32)); ctx->output_bytes = (uint8 *) Malloc(ctx, ctx->output_len); if (ctx->output_bytes != NULL) memcpy(ctx->output_bytes, ctx->tokens, ctx->output_len); } // emit_PASSTHROUGH_start static void emit_PASSTHROUGH_end(Context *ctx) {} static void emit_PASSTHROUGH_finalize(Context *ctx) {} static void emit_PASSTHROUGH_global(Context *ctx, RegisterType t, int n) {} static void emit_PASSTHROUGH_uniform(Context *ctx, RegisterType t, int n) {} static void emit_PASSTHROUGH_sampler(Context *ctx, int s, TextureType ttype) {} static void emit_PASSTHROUGH_attribute(Context *ctx, RegisterType t, int n, MOJOSHADER_usage u, int i, int w) {} #define EMIT_PASSTHROUGH_OPCODE_FUNC(op) \ static void emit_PASSTHROUGH_##op(Context *ctx) {} EMIT_PASSTHROUGH_OPCODE_FUNC(RESERVED) EMIT_PASSTHROUGH_OPCODE_FUNC(NOP) EMIT_PASSTHROUGH_OPCODE_FUNC(MOV) EMIT_PASSTHROUGH_OPCODE_FUNC(ADD) EMIT_PASSTHROUGH_OPCODE_FUNC(SUB) EMIT_PASSTHROUGH_OPCODE_FUNC(MAD) EMIT_PASSTHROUGH_OPCODE_FUNC(MUL) EMIT_PASSTHROUGH_OPCODE_FUNC(RCP) EMIT_PASSTHROUGH_OPCODE_FUNC(RSQ) EMIT_PASSTHROUGH_OPCODE_FUNC(DP3) EMIT_PASSTHROUGH_OPCODE_FUNC(DP4) EMIT_PASSTHROUGH_OPCODE_FUNC(MIN) EMIT_PASSTHROUGH_OPCODE_FUNC(MAX) EMIT_PASSTHROUGH_OPCODE_FUNC(SLT) EMIT_PASSTHROUGH_OPCODE_FUNC(SGE) EMIT_PASSTHROUGH_OPCODE_FUNC(EXP) EMIT_PASSTHROUGH_OPCODE_FUNC(LOG) EMIT_PASSTHROUGH_OPCODE_FUNC(LIT) EMIT_PASSTHROUGH_OPCODE_FUNC(DST) EMIT_PASSTHROUGH_OPCODE_FUNC(LRP) EMIT_PASSTHROUGH_OPCODE_FUNC(FRC) EMIT_PASSTHROUGH_OPCODE_FUNC(M4X4) EMIT_PASSTHROUGH_OPCODE_FUNC(M4X3) EMIT_PASSTHROUGH_OPCODE_FUNC(M3X4) EMIT_PASSTHROUGH_OPCODE_FUNC(M3X3) EMIT_PASSTHROUGH_OPCODE_FUNC(M3X2) EMIT_PASSTHROUGH_OPCODE_FUNC(CALL) EMIT_PASSTHROUGH_OPCODE_FUNC(CALLNZ) EMIT_PASSTHROUGH_OPCODE_FUNC(LOOP) EMIT_PASSTHROUGH_OPCODE_FUNC(RET) EMIT_PASSTHROUGH_OPCODE_FUNC(ENDLOOP) EMIT_PASSTHROUGH_OPCODE_FUNC(LABEL) EMIT_PASSTHROUGH_OPCODE_FUNC(POW) EMIT_PASSTHROUGH_OPCODE_FUNC(CRS) EMIT_PASSTHROUGH_OPCODE_FUNC(SGN) EMIT_PASSTHROUGH_OPCODE_FUNC(ABS) EMIT_PASSTHROUGH_OPCODE_FUNC(NRM) EMIT_PASSTHROUGH_OPCODE_FUNC(SINCOS) EMIT_PASSTHROUGH_OPCODE_FUNC(REP) EMIT_PASSTHROUGH_OPCODE_FUNC(ENDREP) EMIT_PASSTHROUGH_OPCODE_FUNC(IF) EMIT_PASSTHROUGH_OPCODE_FUNC(ELSE) EMIT_PASSTHROUGH_OPCODE_FUNC(ENDIF) EMIT_PASSTHROUGH_OPCODE_FUNC(BREAK) EMIT_PASSTHROUGH_OPCODE_FUNC(MOVA) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXKILL) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXBEM) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXBEML) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXREG2AR) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXREG2GB) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXM3X2PAD) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXM3X2TEX) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXM3X3PAD) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXM3X3TEX) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXM3X3SPEC) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXM3X3VSPEC) EMIT_PASSTHROUGH_OPCODE_FUNC(EXPP) EMIT_PASSTHROUGH_OPCODE_FUNC(LOGP) EMIT_PASSTHROUGH_OPCODE_FUNC(CND) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXREG2RGB) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXDP3TEX) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXM3X2DEPTH) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXDP3) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXM3X3) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXDEPTH) EMIT_PASSTHROUGH_OPCODE_FUNC(CMP) EMIT_PASSTHROUGH_OPCODE_FUNC(BEM) EMIT_PASSTHROUGH_OPCODE_FUNC(DP2ADD) EMIT_PASSTHROUGH_OPCODE_FUNC(DSX) EMIT_PASSTHROUGH_OPCODE_FUNC(DSY) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXLDD) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXLDL) EMIT_PASSTHROUGH_OPCODE_FUNC(BREAKP) EMIT_PASSTHROUGH_OPCODE_FUNC(BREAKC) EMIT_PASSTHROUGH_OPCODE_FUNC(IFC) EMIT_PASSTHROUGH_OPCODE_FUNC(SETP) EMIT_PASSTHROUGH_OPCODE_FUNC(DEF) EMIT_PASSTHROUGH_OPCODE_FUNC(DEFI) EMIT_PASSTHROUGH_OPCODE_FUNC(DEFB) EMIT_PASSTHROUGH_OPCODE_FUNC(DCL) EMIT_PASSTHROUGH_OPCODE_FUNC(TEXCOORD) EMIT_PASSTHROUGH_OPCODE_FUNC(TEX) #undef EMIT_PASSTHROUGH_OPCODE_FUNC #endif // SUPPORT_PROFILE_PASSTHROUGH #if !SUPPORT_PROFILE_GLSL #define PROFILE_EMITTER_GLSL(op) #else #undef AT_LEAST_ONE_PROFILE #define AT_LEAST_ONE_PROFILE 1 #define PROFILE_EMITTER_GLSL(op) emit_GLSL_##op, const char *get_GLSL_register_string(Context *ctx, RegisterType regtype, int regnum, char *regnum_str, int len) { const char *retval = get_D3D_register_string(ctx, regtype, regnum, regnum_str, len); if (retval == NULL) { fail(ctx, "Unknown D3D register type."); return ""; } // if return retval; } // get_GLSL_register_string static const char *get_GLSL_varname(Context *ctx, RegisterType rt, int regnum) { char regnum_str[16]; const char *shader_type_str = get_shader_type_string(ctx); const char *regtype_str = get_GLSL_register_string(ctx, rt, regnum, regnum_str, sizeof (regnum_str)); char *retval = get_scratch_buffer(ctx); snprintf(retval, SCRATCH_BUFFER_SIZE, "%s_%s%s", shader_type_str, regtype_str, regnum_str); return retval; } // get_GLSL_varname static const char *get_GLSL_destarg_varname(Context *ctx) { const DestArgInfo *arg = &ctx->dest_arg; return get_GLSL_varname(ctx, arg->regtype, arg->regnum); } // get_GLSL_destarg_varname static const char *get_GLSL_srcarg_varname(Context *ctx, int idx) { if (idx >= STATICARRAYLEN(ctx->source_args)) { fail(ctx, "Too many source args"); return ""; } // if const SourceArgInfo *arg = &ctx->source_args[idx]; return get_GLSL_varname(ctx, arg->regtype, arg->regnum); } // get_GLSL_srcarg_varname static const char *make_GLSL_destarg_assign(Context *, const char *, ...) ISPRINTF(2,3); static const char *make_GLSL_destarg_assign(Context *ctx, const char *fmt, ...) { int need_parens = 0; const DestArgInfo *arg = &ctx->dest_arg; if (arg->writemask == 0x0) fail(ctx, "BUG: empty writemask"); // !!! FIXME: make this a no-op? char clampbuf[32] = { '\0' }; const char *clampleft = ""; const char *clampright = ""; if (arg->result_mod & MOD_SATURATE) { const int vecsize = vecsize_from_writemask(arg->writemask); clampleft = "clamp("; if (vecsize == 1) clampright = ", 0.0, 1.0)"; else { snprintf(clampbuf, sizeof (clampbuf), ", vec%d(0.0), vec%d(1.0))", vecsize, vecsize); clampright = clampbuf; } // else } // if // MSDN says MOD_PP is a hint and many implementations ignore it. So do we. if (arg->result_mod & MOD_CENTROID) { fail(ctx, "unsupported"); return ""; } // !!! FIXME if (ctx->predicated) { fail(ctx, "unsupported"); return ""; } // !!! FIXME char *operation = get_scratch_buffer(ctx); va_list ap; va_start(ap, fmt); const int len = vsnprintf(operation, SCRATCH_BUFFER_SIZE, fmt, ap); va_end(ap); if (len >= SCRATCH_BUFFER_SIZE) { fail(ctx, "operation string too large"); // I'm lazy. :P return ""; } // if const char *result_shift_str = ""; switch (arg->result_shift) { case 0x1: result_shift_str = " * 2.0"; break; case 0x2: result_shift_str = " * 4.0"; break; case 0x3: result_shift_str = " * 8.0"; break; case 0xD: result_shift_str = " / 8.0"; break; case 0xE: result_shift_str = " / 4.0"; break; case 0xF: result_shift_str = " / 2.0"; break; } // switch need_parens |= (result_shift_str[0] != '\0'); char regnum_str[16]; const char *regtype_str = get_GLSL_register_string(ctx, arg->regtype, arg->regnum, regnum_str, sizeof (regnum_str)); char writemask_str[6]; int i = 0; if (arg->writemask != 0xF) // 0xF == 1111. No explicit mask. { writemask_str[i++] = '.'; if (arg->writemask0) writemask_str[i++] = 'x'; if (arg->writemask1) writemask_str[i++] = 'y'; if (arg->writemask2) writemask_str[i++] = 'z'; if (arg->writemask3) writemask_str[i++] = 'w'; } // if writemask_str[i] = '\0'; assert(i < sizeof (writemask_str)); const char *leftparen = (need_parens) ? "(" : ""; const char *rightparen = (need_parens) ? ")" : ""; const char *shader_type_str = get_shader_type_string(ctx); char *retval = get_scratch_buffer(ctx); snprintf(retval, SCRATCH_BUFFER_SIZE, "%s_%s%s%s = %s%s%s%s%s%s;", shader_type_str, regtype_str, regnum_str, writemask_str, clampleft, leftparen, operation, rightparen, result_shift_str, clampright); // !!! FIXME: make sure the scratch buffer was large enough. return retval; } // make_GLSL_destarg_assign static char *make_GLSL_srcarg_string(Context *ctx, const int idx, const int writemask) { if (idx >= STATICARRAYLEN(ctx->source_args)) { fail(ctx, "Too many source args"); return ""; } // if // !!! FIXME: not right. const SourceArgInfo *arg = &ctx->source_args[idx]; const int writemask0 = (writemask >> 0) & 0x1; const int writemask1 = (writemask >> 1) & 0x1; const int writemask2 = (writemask >> 2) & 0x1; const int writemask3 = (writemask >> 3) & 0x1; const char *premod_str = ""; const char *postmod_str = ""; switch (arg->src_mod) { case SRCMOD_NEGATE: premod_str = "-"; break; case SRCMOD_BIASNEGATE: premod_str = "-"; // fall through. case SRCMOD_BIAS: fail(ctx, "unsupported"); return ""; // !!! FIXME postmod_str = "_bias"; break; case SRCMOD_SIGNNEGATE: premod_str = "-"; // fall through. case SRCMOD_SIGN: fail(ctx, "unsupported"); return ""; // !!! FIXME postmod_str = "_bx2"; break; case SRCMOD_COMPLEMENT: fail(ctx, "unsupported"); return ""; // !!! FIXME (need to handle vecsize) premod_str = "(1.0 - ("; postmod_str = "))"; break; case SRCMOD_X2NEGATE: fail(ctx, "unsupported"); return ""; // !!! FIXME (need to handle vecsize) premod_str = "-("; postmod_str = " * 2.0)"; break; case SRCMOD_X2: fail(ctx, "unsupported"); return ""; // !!! FIXME (need to handle vecsize) premod_str = "("; postmod_str = " * 2.0)"; break; case SRCMOD_DZ: fail(ctx, "unsupported"); return ""; // !!! FIXME postmod_str = "_dz"; break; case SRCMOD_DW: fail(ctx, "unsupported"); return ""; // !!! FIXME postmod_str = "_dw"; break; case SRCMOD_ABSNEGATE: premod_str = "-abs("; postmod_str = ")"; break; case SRCMOD_ABS: premod_str = "abs("; postmod_str = ")"; break; case SRCMOD_NOT: premod_str = "!"; break; case SRCMOD_NONE: case SRCMOD_TOTAL: break; // stop compiler whining. } // switch char regnum_str[16]; const char *regtype_str = get_GLSL_register_string(ctx, arg->regtype, arg->regnum, regnum_str, sizeof (regnum_str)); if (regtype_str == NULL) { fail(ctx, "Unknown source register type."); return ""; } // if const char *rel_lbracket = ""; const char *rel_rbracket = ""; char rel_swizzle[4] = { '\0' }; char rel_regnum_str[16] = { '\0' }; const char *rel_regtype_str = ""; if (arg->relative) { rel_swizzle[0] = '.'; rel_swizzle[1] = swizzle_channels[arg->relative_component]; rel_swizzle[2] = '\0'; rel_lbracket = "["; rel_rbracket = "]"; rel_regtype_str = get_GLSL_register_string(ctx, arg->relative_regtype, arg->relative_regnum, rel_regnum_str, sizeof (rel_regnum_str)); if (regtype_str == NULL) { fail(ctx, "Unknown relative source register type."); return ""; } // if } // if char swiz_str[6]; int i = 0; // 0xE4 == 11100100 ... 3 2 1 0. No swizzle. if ((arg->swizzle != 0xE4) || (writemask != 0xF)) { swiz_str[i++] = '.'; if (writemask0) swiz_str[i++] = swizzle_channels[arg->swizzle_x]; if (writemask1) swiz_str[i++] = swizzle_channels[arg->swizzle_y]; if (writemask2) swiz_str[i++] = swizzle_channels[arg->swizzle_z]; if (writemask3) swiz_str[i++] = swizzle_channels[arg->swizzle_w]; } // if swiz_str[i] = '\0'; assert(i < sizeof (swiz_str)); const char *shader_type_str = get_shader_type_string(ctx); char *retval = get_scratch_buffer(ctx); snprintf(retval, SCRATCH_BUFFER_SIZE, "%s%s_%s%s%s%s%s%s%s%s%s", premod_str, shader_type_str, regtype_str, regnum_str, rel_lbracket, rel_regtype_str, rel_regnum_str, rel_swizzle, rel_rbracket, swiz_str, postmod_str); // !!! FIXME: make sure the scratch buffer was large enough. return retval; } // make_GLSL_srcarg_string static inline char *make_GLSL_srcarg_string_x(Context *ctx, const int idx) { return make_GLSL_srcarg_string(ctx, idx, (1 << 0)); } // make_GLSL_srcarg_string_x static inline char *make_GLSL_srcarg_string_y(Context *ctx, const int idx) { return make_GLSL_srcarg_string(ctx, idx, (1 << 1)); } // make_GLSL_srcarg_string_y static inline char *make_GLSL_srcarg_string_z(Context *ctx, const int idx) { return make_GLSL_srcarg_string(ctx, idx, (1 << 2)); } // make_GLSL_srcarg_string_z static inline char *make_GLSL_srcarg_string_w(Context *ctx, const int idx) { return make_GLSL_srcarg_string(ctx, idx, (1 << 3)); } // make_GLSL_srcarg_string_w static inline char *make_GLSL_srcarg_string_scalar(Context *ctx, const int idx) { return make_GLSL_srcarg_string_x(ctx, idx); } // make_GLSL_srcarg_string_scalar static inline char *make_GLSL_srcarg_string_full(Context *ctx, const int idx) { return make_GLSL_srcarg_string(ctx, idx, 0xF); } // make_GLSL_srcarg_string_scalar static inline char *make_GLSL_srcarg_string_masked(Context *ctx, const int idx) { return make_GLSL_srcarg_string(ctx, idx, ctx->dest_arg.writemask); } // make_GLSL_srcarg_string_scalar static inline char *make_GLSL_srcarg_string_vec3(Context *ctx, const int idx) { return make_GLSL_srcarg_string(ctx, idx, 0x7); } // make_GLSL_srcarg_string_vec3 static inline char *make_GLSL_srcarg_string_vec2(Context *ctx, const int idx) { return make_GLSL_srcarg_string(ctx, idx, 0x3); } // make_GLSL_srcarg_string_vec2 // special cases for comparison opcodes... static const char *get_GLSL_comparison_string_scalar(Context *ctx) { static const char *comps[] = { "", ">", "==", ">=", "<", "!=", "<=" }; if (ctx->instruction_controls >= STATICARRAYLEN(comps)) { fail(ctx, "unknown comparison control"); return ""; } // if return comps[ctx->instruction_controls]; } // get_GLSL_comparison_string_scalar static const char *get_GLSL_comparison_string_vector(Context *ctx) { static const char *comps[] = { "", "greaterThan", "equal", "greaterThanEqual", "lessThan", "notEqual", "lessThanEqual" }; if (ctx->instruction_controls >= STATICARRAYLEN(comps)) { fail(ctx, "unknown comparison control"); return ""; } // if return comps[ctx->instruction_controls]; } // get_GLSL_comparison_string_vector static void emit_GLSL_start(Context *ctx) { if (!shader_is_vertex(ctx) && !shader_is_pixel(ctx)) { failf(ctx, "Shader type %u unsupported in this profile.", (uint) ctx->shader_type); return; } // if ctx->output = &ctx->mainline_intro; output_line(ctx, "void main()"); output_line(ctx, "{"); ctx->output = &ctx->mainline; ctx->indent++; } // emit_GLSL_start static void emit_GLSL_RET(Context *ctx); static void emit_GLSL_end(Context *ctx) { // force a RET opcode if we're at the end of the stream without one. if (ctx->previous_opcode != OPCODE_RET) emit_GLSL_RET(ctx); } // emit_GLSL_end static void emit_GLSL_finalize(Context *ctx) { const RegisterList *reg = NULL; // throw some blank lines around to make source more readable. push_output(ctx, &ctx->globals); output_blank_line(ctx); pop_output(ctx); push_output(ctx, &ctx->mainline_intro); ctx->indent++; // Make sure this is always set, moved from our generic attribute. reg = declared_attribute(ctx, MOJOSHADER_USAGE_POSITION, 0); if (reg != NULL) { // !!! FIXME: only emit if shader didn't definitely set gl_Position. output_line(ctx, "gl_Position = %s;", get_GLSL_varname(ctx, reg->regtype, reg->regnum)); } // if ctx->indent--; pop_output(ctx); } // emit_GLSL_finalize static void emit_GLSL_global(Context *ctx, RegisterType regtype, int regnum) { const char *varname = get_GLSL_varname(ctx, regtype, regnum); push_output(ctx, &ctx->globals); switch (regtype) { case REG_TYPE_ADDRESS: output_line(ctx, "ivec4 %s;", varname); break; case REG_TYPE_PREDICATE: output_line(ctx, "bvec4 %s;", varname); break; case REG_TYPE_TEMP: output_line(ctx, "vec4 %s;", varname); break; case REG_TYPE_LOOP: break; // no-op. We declare these in for loops at the moment. case REG_TYPE_LABEL: break; // no-op. If we see it here, it means we optimized it out. default: fail(ctx, "BUG: we used a register we don't know how to define."); break; } // switch pop_output(ctx); } // emit_GLSL_global static void emit_GLSL_uniform(Context *ctx, RegisterType regtype, int regnum) { const char *varname = get_GLSL_varname(ctx, regtype, regnum); const char *type = NULL; switch (regtype) { case REG_TYPE_CONST: type = "vec4"; break; case REG_TYPE_CONSTINT: type = "ivec4"; break; case REG_TYPE_CONSTBOOL: type = "bvec4"; break; default: fail(ctx, "BUG: used a uniform we don't know how to define."); } // switch push_output(ctx, &ctx->globals); output_line(ctx, "uniform %s %s;", type, varname); pop_output(ctx); } // emit_GLSL_uniform static void emit_GLSL_sampler(Context *ctx, int stage, TextureType ttype) { const char *varname = get_GLSL_varname(ctx, REG_TYPE_SAMPLER, stage); const char *type = NULL; switch (ttype) { case TEXTURE_TYPE_2D: type = "sampler2D"; break; case TEXTURE_TYPE_CUBE: type = "samplerCube"; break; case TEXTURE_TYPE_VOLUME: type = "sampler3D"; break; default: fail(ctx, "BUG: used a sampler we don't know how to define."); } // switch push_output(ctx, &ctx->globals); output_line(ctx, "uniform %s %s;", type, varname); pop_output(ctx); } // emit_GLSL_sampler static void emit_GLSL_attribute(Context *ctx, RegisterType regtype, int regnum, MOJOSHADER_usage usage, int index, int wmask) { // !!! FIXME: this function doesn't deal with write masks at all yet! const char *varname = get_GLSL_varname(ctx, regtype, regnum); const char *usage_str = NULL; char index_str[16] = { '\0' }; if (index != 0) // !!! FIXME: a lot of these MUST be zero. snprintf(index_str, sizeof (index_str), "%u", (uint) index); if (shader_is_vertex(ctx)) { // pre-vs3 output registers. // these don't ever happen in DCL opcodes, I think. Map to vs_3_* // output registers. if (!shader_version_atleast(ctx, 3, 0)) { if (regtype == REG_TYPE_RASTOUT) { regtype = REG_TYPE_OUTPUT; index = regnum; switch ((const RastOutType) regnum) { case RASTOUT_TYPE_POSITION: usage = MOJOSHADER_USAGE_POSITION; break; case RASTOUT_TYPE_FOG: usage = MOJOSHADER_USAGE_FOG; break; case RASTOUT_TYPE_POINT_SIZE: usage = MOJOSHADER_USAGE_POINTSIZE; break; } // switch } // if else if (regtype == REG_TYPE_ATTROUT) { regtype = REG_TYPE_OUTPUT; usage = MOJOSHADER_USAGE_COLOR; index = regnum; } // else if else if (regtype == REG_TYPE_TEXCRDOUT) { regtype = REG_TYPE_OUTPUT; usage = MOJOSHADER_USAGE_TEXCOORD; index = regnum; } // else if } // if // to avoid limitations of various GL entry points for input // attributes (glSecondaryColorPointer() can only take 3 component // items, glVertexPointer() can't do GL_UNSIGNED_BYTE, many other // issues), we set up all inputs as generic vertex attributes, so we // can pass data in just about any form, and ignore the built-in GLSL // attributes like gl_SecondaryColor. Output needs to use the the // built-ins, though, but we don't have to worry about the GL entry // point limitations there. if (regtype == REG_TYPE_INPUT) { push_output(ctx, &ctx->globals); output_line(ctx, "attribute vec4 %s;", varname); pop_output(ctx); } // if else if (regtype == REG_TYPE_OUTPUT) { const char *arrayleft = ""; const char *arrayright = ""; switch (usage) { case MOJOSHADER_USAGE_POSITION: usage_str = "gl_Position"; break; case MOJOSHADER_USAGE_POINTSIZE: usage_str = "gl_PointSize"; break; case MOJOSHADER_USAGE_COLOR: index_str[0] = '\0'; // no explicit number. if (index == 0) usage_str = "gl_FrontColor"; else if (index == 1) usage_str = "gl_FrontSecondaryColor"; break; case MOJOSHADER_USAGE_FOG: usage_str = "gl_FogFragCoord"; break; case MOJOSHADER_USAGE_TEXCOORD: snprintf(index_str, sizeof (index_str), "%u", (uint) index); usage_str = "gl_TexCoord"; arrayleft = "["; arrayright = "]"; break; default: // !!! FIXME: we need to deal with some more built-in varyings here. break; } // switch // !!! FIXME: the #define is a little hacky, but it means we don't // !!! FIXME: have to track these separately if this works. push_output(ctx, &ctx->globals); // no mapping to built-in var? Just make it a regular global, pray. if (usage_str == NULL) output_line(ctx, "vec4 %s;", varname); else { output_line(ctx, "#define %s %s%s%s%s", varname, usage_str, arrayleft, index_str, arrayright); } // else pop_output(ctx); } // else if else { fail(ctx, "unknown attribute register"); } // else } // if #if 0 // !!! FIXME: write me. else if (shader_is_pixel(ctx)) { if (regtype == REG_TYPE_SAMPLER) { switch ((const TextureType) usage) { case TEXTURE_TYPE_2D: usage_str = "_2d"; break; case TEXTURE_TYPE_CUBE: usage_str = "_cube"; break; case TEXTURE_TYPE_VOLUME: usage_str = "_volume"; break; default: fail(ctx, "unknown sampler texture type"); return; } // switch } // if else if (regtype == REG_TYPE_COLOROUT) { retval = "oC"; } // else if else if (regtype == REG_TYPE_DEPTHOUT) { retval = "oDepth"; } // else if } // else if #endif else { fail(ctx, "Unknown shader type"); // state machine should catch this. } // else } // emit_GLSL_attribute static void emit_GLSL_NOP(Context *ctx) { // no-op is a no-op. :) } // emit_GLSL_NOP static void emit_GLSL_MOV(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *code = make_GLSL_destarg_assign(ctx, "%s", src0); output_line(ctx, "%s", code); } // emit_GLSL_MOV static void emit_GLSL_ADD(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *src1 = make_GLSL_srcarg_string_masked(ctx, 1); const char *code = make_GLSL_destarg_assign(ctx, "%s + %s", src0, src1); output_line(ctx, "%s", code); } // emit_GLSL_ADD static void emit_GLSL_SUB(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *src1 = make_GLSL_srcarg_string_masked(ctx, 1); const char *code = make_GLSL_destarg_assign(ctx, "%s - %s", src0, src1); output_line(ctx, "%s", code); } // emit_GLSL_SUB static void emit_GLSL_MAD(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *src1 = make_GLSL_srcarg_string_masked(ctx, 1); const char *src2 = make_GLSL_srcarg_string_masked(ctx, 2); const char *code = make_GLSL_destarg_assign(ctx, "(%s * %s) + %s", src0, src1, src2); output_line(ctx, "%s", code); } // emit_GLSL_MAD static void emit_GLSL_MUL(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *src1 = make_GLSL_srcarg_string_masked(ctx, 1); const char *code = make_GLSL_destarg_assign(ctx, "%s * %s", src0, src1); output_line(ctx, "%s", code); } // emit_GLSL_MUL static void emit_GLSL_RCP(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *code = make_GLSL_destarg_assign(ctx, "1.0 / %s", src0); output_line(ctx, "%s", code); } // emit_GLSL_RCP static void emit_GLSL_RSQ(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *code = make_GLSL_destarg_assign(ctx, "inversesqrt(%s)", src0); output_line(ctx, "%s", code); } // emit_GLSL_RSQ static void emit_GLSL_dotprod(Context *ctx, const char *src0, const char *src1, const char *extra) { const int vecsize = vecsize_from_writemask(ctx->dest_arg.writemask); char castleft[16] = { '\0' }; const char *castright = ""; if (vecsize != 1) { snprintf(castleft, sizeof (castleft), "vec%d(", vecsize); castright = ")"; } // if const char *code = make_GLSL_destarg_assign(ctx, "%sdot(%s, %s)%s%s", castleft, src0, src1, extra, castright); output_line(ctx, "%s", code); } // emit_GLSL_dotprod static void emit_GLSL_DP3(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_vec3(ctx, 0); const char *src1 = make_GLSL_srcarg_string_vec3(ctx, 1); emit_GLSL_dotprod(ctx, src0, src1, ""); } // emit_GLSL_DP3 static void emit_GLSL_DP4(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_full(ctx, 0); const char *src1 = make_GLSL_srcarg_string_full(ctx, 1); emit_GLSL_dotprod(ctx, src0, src1, ""); } // emit_GLSL_DP4 static void emit_GLSL_MIN(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *src1 = make_GLSL_srcarg_string_masked(ctx, 1); const char *code = make_GLSL_destarg_assign(ctx, "min(%s, %s)", src0, src1); output_line(ctx, "%s", code); } // emit_GLSL_MIN static void emit_GLSL_MAX(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *src1 = make_GLSL_srcarg_string_masked(ctx, 1); const char *code = make_GLSL_destarg_assign(ctx, "max(%s, %s)", src0, src1); output_line(ctx, "%s", code); } // emit_GLSL_MAX static void emit_GLSL_SLT(Context *ctx) { const int vecsize = vecsize_from_writemask(ctx->dest_arg.writemask); const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *src1 = make_GLSL_srcarg_string_masked(ctx, 1); const char *code = NULL; // float(bool) or vec(bvec) results in 0.0 or 1.0, like SGE wants. if (vecsize == 1) code = make_GLSL_destarg_assign(ctx, "float(%s < %s)", src0, src1); else { code = make_GLSL_destarg_assign(ctx, "vec%d(lessThan(%s, %s))", vecsize, src0, src1); } // else output_line(ctx, "%s", code); } // emit_GLSL_SLT static void emit_GLSL_SGE(Context *ctx) { const int vecsize = vecsize_from_writemask(ctx->dest_arg.writemask); const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *src1 = make_GLSL_srcarg_string_masked(ctx, 1); const char *code = NULL; // float(bool) or vec(bvec) results in 0.0 or 1.0, like SGE wants. if (vecsize == 1) code = make_GLSL_destarg_assign(ctx, "float(%s >= %s)", src0, src1); else { code = make_GLSL_destarg_assign(ctx, "vec%d(greaterThanEqual(%s, %s))", vecsize, src0, src1); } // else output_line(ctx, "%s", code); } // emit_GLSL_SGE static void emit_GLSL_EXP(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *code = make_GLSL_destarg_assign(ctx, "exp2(%s)", src0); output_line(ctx, "%s", code); } // emit_GLSL_EXP static void emit_GLSL_LOG(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *code = make_GLSL_destarg_assign(ctx, "log2(%s)", src0); output_line(ctx, "%s", code); } // emit_GLSL_LOG static void emit_GLSL_LIT_helper(Context *ctx) { const char *maxp = "127.9961f"; // value from the dx9 reference. if (ctx->flags & CTX_FLAGS_GLSL_LIT_OPCODE) return; ctx->flags = (ContextFlags) (ctx->flags | CTX_FLAGS_GLSL_LIT_OPCODE); push_output(ctx, &ctx->helpers); output_line(ctx, "const vec4 LIT(const vec4 src)"); output_line(ctx, "{"); ctx->indent++; output_line(ctx, "const float power = clamp(src.w, -%s, %s);",maxp,maxp); output_line(ctx, "vec4 retval(1.0, 0.0, 0.0, 1.0)"); output_line(ctx, "if (src.x > 0.0) {"); ctx->indent++; output_line(ctx, "retval.y = src.x;"); output_line(ctx, "if (src.y > 0.0) {"); ctx->indent++; output_line(ctx, "retval.z = pow(src.y, power);"); ctx->indent--; output_line(ctx, "}"); ctx->indent--; output_line(ctx, "}"); output_line(ctx, "return retval;"); ctx->indent--; output_line(ctx, "}"); output_blank_line(ctx); pop_output(ctx); } // emit_GLSL_LIT_helper static void emit_GLSL_LIT(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_full(ctx, 0); const char *code = make_GLSL_destarg_assign(ctx, "LIT(%s)", src0); output_line(ctx, "%s", code); emit_GLSL_LIT_helper(ctx); } // emit_GLSL_LIT static void emit_GLSL_DST(Context *ctx) { // !!! FIXME: needs to take ctx->dst_arg.writemask into account. const char *src0_y = make_GLSL_srcarg_string_y(ctx, 0); const char *src1_y = make_GLSL_srcarg_string_y(ctx, 1); const char *src0_z = make_GLSL_srcarg_string_z(ctx, 0); const char *src1_w = make_GLSL_srcarg_string_w(ctx, 1); const char *code = make_GLSL_destarg_assign(ctx, "vec4(1.0, %s * %s, %s, %s)", src0_y, src1_y, src0_z, src1_w); output_line(ctx, "%s", code); } // emit_GLSL_DST static void emit_GLSL_LRP(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *src1 = make_GLSL_srcarg_string_masked(ctx, 1); const char *src2 = make_GLSL_srcarg_string_masked(ctx, 2); const char *code = make_GLSL_destarg_assign(ctx, "mix(%s, %s, %s)", src2, src1, src0); output_line(ctx, "%s", code); } // emit_GLSL_LRP static void emit_GLSL_FRC(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *code = make_GLSL_destarg_assign(ctx, "fract(%s)", src0); output_line(ctx, "%s", code); } // emit_GLSL_FRC static void emit_GLSL_M4X4(Context *ctx) { // !!! FIXME: d3d is row-major, glsl is column-major, I think. const char *src0 = make_GLSL_srcarg_string_full(ctx, 0); const char *row0 = make_GLSL_srcarg_string_full(ctx, 1); const char *row1 = make_GLSL_srcarg_string_full(ctx, 2); const char *row2 = make_GLSL_srcarg_string_full(ctx, 3); const char *row3 = make_GLSL_srcarg_string_full(ctx, 4); const char *code = make_GLSL_destarg_assign(ctx, "vec4(dot(%s, %s), dot(%s, %s), dot(%s, %s), dot(%s, %s))", src0, row0, src0, row1, src0, row2, src0, row3); output_line(ctx, "%s", code); } // emit_GLSL_M4X4 static void emit_GLSL_M4X3(Context *ctx) { // !!! FIXME: d3d is row-major, glsl is column-major, I think. const char *src0 = make_GLSL_srcarg_string_full(ctx, 0); const char *row0 = make_GLSL_srcarg_string_full(ctx, 1); const char *row1 = make_GLSL_srcarg_string_full(ctx, 2); const char *row2 = make_GLSL_srcarg_string_full(ctx, 3); const char *code = make_GLSL_destarg_assign(ctx, "vec3(dot(%s, %s), dot(%s, %s), dot(%s, %s))", src0, row0, src0, row1, src0, row2); output_line(ctx, "%s", code); } // emit_GLSL_M4X3 static void emit_GLSL_M3X4(Context *ctx) { // !!! FIXME: d3d is row-major, glsl is column-major, I think. const char *src0 = make_GLSL_srcarg_string_vec3(ctx, 0); const char *row0 = make_GLSL_srcarg_string_vec3(ctx, 1); const char *row1 = make_GLSL_srcarg_string_vec3(ctx, 2); const char *row2 = make_GLSL_srcarg_string_vec3(ctx, 3); const char *row3 = make_GLSL_srcarg_string_vec3(ctx, 4); const char *code = make_GLSL_destarg_assign(ctx, "vec4(dot(%s, %s), dot(%s, %s), " "dot(%s, %s), dot(%s, %s))", src0, row0, src0, row1, src0, row2, src0, row3); output_line(ctx, "%s", code); } // emit_GLSL_M3X4 static void emit_GLSL_M3X3(Context *ctx) { // !!! FIXME: d3d is row-major, glsl is column-major, I think. const char *src0 = make_GLSL_srcarg_string_vec3(ctx, 0); const char *row0 = make_GLSL_srcarg_string_vec3(ctx, 1); const char *row1 = make_GLSL_srcarg_string_vec3(ctx, 2); const char *row2 = make_GLSL_srcarg_string_vec3(ctx, 3); const char *code = make_GLSL_destarg_assign(ctx, "vec3(dot(%s, %s), dot(%s, %s), dot(%s, %s))", src0, row0, src0, row1, src0, row2); output_line(ctx, "%s", code); } // emit_GLSL_M3X3 static void emit_GLSL_M3X2(Context *ctx) { // !!! FIXME: d3d is row-major, glsl is column-major, I think. const char *src0 = make_GLSL_srcarg_string_vec3(ctx, 0); const char *row0 = make_GLSL_srcarg_string_vec3(ctx, 1); const char *row1 = make_GLSL_srcarg_string_vec3(ctx, 2); const char *code = make_GLSL_destarg_assign(ctx, "vec2(dot(%s, %s), dot(%s, %s))", src0, row0, src0, row1); output_line(ctx, "%s", code); } // emit_GLSL_M3X2 static void emit_GLSL_CALL(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); if (ctx->loops > 0) output_line(ctx, "%s(aL);", src0); else output_line(ctx, "%s();", src0); } // emit_GLSL_CALL static void emit_GLSL_CALLNZ(Context *ctx) { // !!! FIXME: if src1 is a constbool that's true, we can remove the // !!! FIXME: if. If it's false, we can make this a no-op. const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *src1 = make_GLSL_srcarg_string_masked(ctx, 1); if (ctx->loops > 0) output_line(ctx, "if (%s) { %s(aL); }", src1, src0); else output_line(ctx, "if (%s) { %s(); }", src1, src0); } // emit_GLSL_CALLNZ static void emit_GLSL_LOOP(Context *ctx) { const char *varname = get_GLSL_srcarg_varname(ctx, 1); assert(ctx->source_args[0].regnum == 0); // in case they add aL1 someday. output_line(ctx, "{"); ctx->indent++; output_line(ctx, "const int aLend = %s.x + %s.y;", varname, varname); output_line(ctx, "for (int aL = %s.y; aL < aLend; aL += %s.z) {", varname, varname); ctx->indent++; } // emit_GLSL_LOOP static void emit_GLSL_RET(Context *ctx) { // thankfully, the MSDN specs say a RET _has_ to end a function...no // early returns. So if you hit one, you know you can safely close // a high-level function. ctx->indent--; output_line(ctx, "}"); output_blank_line(ctx); ctx->output = &ctx->subroutines; } // emit_GLSL_RET static void emit_GLSL_ENDLOOP(Context *ctx) { ctx->indent--; output_line(ctx, "}"); ctx->indent--; output_line(ctx, "}"); } // emit_GLSL_ENDLOOP static void emit_GLSL_LABEL(Context *ctx) { const char *labelstr = make_GLSL_srcarg_string_masked(ctx, 0); const int label = ctx->source_args[0].regnum; RegisterList *reg = reglist_find(&ctx->used_registers, REG_TYPE_LABEL, label); assert(ctx->output == &ctx->subroutines); // not mainline, etc. assert(ctx->indent == 0); // we shouldn't be in the middle of a function. // MSDN specs say CALL* has to come before the LABEL, so we know if we // can ditch the entire function here as unused. if (reg == NULL) ctx->output = &ctx->ignore; // Func not used. Parse, but don't output. // !!! FIXME: it would be nice if we could determine if a function is // !!! FIXME: only called once and, if so, forcibly inline it. const char *uses_loopreg = ((reg) && (reg->misc == 1)) ? "int aL" : ""; output_line(ctx, "void %s(%s)", labelstr, uses_loopreg); output_line(ctx, "{"); ctx->indent++; } // emit_GLSL_LABEL static void emit_GLSL_DCL(Context *ctx) { // no-op. We do this in our emit_attribute() and emit_uniform(). } // emit_GLSL_DCL static void emit_GLSL_POW(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *src1 = make_GLSL_srcarg_string_masked(ctx, 1); const char *code = make_GLSL_destarg_assign(ctx, "pow(abs(%s), %s))", src0, src1); output_line(ctx, "%s", code); } // emit_GLSL_POW static void emit_GLSL_CRS(Context *ctx) { // !!! FIXME: needs to take ctx->dst_arg.writemask into account. const char *src0 = make_GLSL_srcarg_string_vec3(ctx, 0); const char *src1 = make_GLSL_srcarg_string_vec3(ctx, 1); const char *code = make_GLSL_destarg_assign(ctx, "cross(%s, %s)", src0, src1); output_line(ctx, "%s", code); } // emit_GLSL_CRS static void emit_GLSL_SGN(Context *ctx) { // (we don't need the temporary registers specified for the D3D opcode.) const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *code = make_GLSL_destarg_assign(ctx, "sign(%s)", src0); output_line(ctx, "%s", code); } // emit_GLSL_SGN static void emit_GLSL_ABS(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *code = make_GLSL_destarg_assign(ctx, "abs(%s)", src0); output_line(ctx, "%s", code); } // emit_GLSL_ABS static void emit_GLSL_NRM(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *code = make_GLSL_destarg_assign(ctx, "normalize(%s)", src0); output_line(ctx, "%s", code); } // emit_GLSL_NRM static void emit_GLSL_SINCOS(Context *ctx) { // we don't care about the temp registers that <= sm2 demands; ignore them. // sm2 also talks about what components are left untouched vs. undefined, // but we just leave those all untouched with GLSL write masks (which // would fulfill the "undefined" requirement, too). const int mask = ctx->dest_arg.writemask; const char *src0 = make_GLSL_srcarg_string_scalar(ctx, 0); const char *code = NULL; if (mask == 0x1) // .x code = make_GLSL_destarg_assign(ctx, "cos(%s)", src0); else if (mask == 0x2) // .y code = make_GLSL_destarg_assign(ctx, "sin(%s)", src0); else if (mask == 0x3) // .xy code = make_GLSL_destarg_assign(ctx, "vec2(cos(%s), sin(%s))", src0, src0); output_line(ctx, "%s", code); } // emit_GLSL_SINCOS static void emit_GLSL_REP(Context *ctx) { // !!! FIXME: // msdn docs say legal loop values are 0 to 255. We can check DEFI values // at parse time, but if they are pulling a value from a uniform, do // we clamp here? // !!! FIXME: swizzle is legal here, right? const char *src0 = make_GLSL_srcarg_string_x(ctx, 0); const uint rep = (uint) ctx->reps; output_line(ctx, "for (int rep%u = 0; rep%u < %s; rep%u++) {", rep, rep, src0, rep); ctx->indent++; } // emit_GLSL_REP static void emit_GLSL_ENDREP(Context *ctx) { ctx->indent--; output_line(ctx, "}"); } // emit_GLSL_ENDREP static void emit_GLSL_IF(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_scalar(ctx, 0); output_line(ctx, "if (%s) {", src0); ctx->indent++; } // emit_GLSL_IF static void emit_GLSL_IFC(Context *ctx) { const char *comp = get_GLSL_comparison_string_scalar(ctx); const char *src0 = make_GLSL_srcarg_string_scalar(ctx, 0); const char *src1 = make_GLSL_srcarg_string_scalar(ctx, 1); output_line(ctx, "if (%s %s %s) {", src0, comp, src1); ctx->indent++; } // emit_GLSL_IFC static void emit_GLSL_ELSE(Context *ctx) { ctx->indent--; output_line(ctx, "} else {"); ctx->indent++; } // emit_GLSL_ELSE static void emit_GLSL_ENDIF(Context *ctx) { ctx->indent--; output_line(ctx, "}"); } // emit_GLSL_ENDIF static void emit_GLSL_BREAK(Context *ctx) { output_line(ctx, "break;"); } // emit_GLSL_BREAK static void emit_GLSL_BREAKC(Context *ctx) { const char *comp = get_GLSL_comparison_string_scalar(ctx); const char *src0 = make_GLSL_srcarg_string_scalar(ctx, 0); const char *src1 = make_GLSL_srcarg_string_scalar(ctx, 1); output_line(ctx, "if (%s %s %s) { break; }", src0, comp, src1); } // emit_GLSL_BREAKC static void emit_GLSL_MOVA(Context *ctx) { const int vecsize = vecsize_from_writemask(ctx->dest_arg.writemask); const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); if (vecsize == 1) { const char *code = make_GLSL_destarg_assign(ctx, "int(floor(abs(%s) + 0.5) * sign(%s))", src0, src0); output_line(ctx, "%s", code); } // if else { const char *code = make_GLSL_destarg_assign(ctx, "ivec%d(floor(abs(%s) + vec%d(0.5)) * sign(%s))", vecsize, src0, vecsize, src0); output_line(ctx, "%s", code); } // else } // emit_GLSL_MOVA static void emit_GLSL_DEFB(Context *ctx) { const char *varname = get_GLSL_destarg_varname(ctx); push_output(ctx, &ctx->globals); output_line(ctx, "const bool %s = %s;", varname, ctx->dwords[0] ? "true" : "false"); pop_output(ctx); } // emit_GLSL_DEFB static void emit_GLSL_DEFI(Context *ctx) { const char *varname = get_GLSL_destarg_varname(ctx); const int32 *x = (const int32 *) ctx->dwords; push_output(ctx, &ctx->globals); output_line(ctx, "const ivec4 %s = ivec4(%d, %d, %d, %d);", varname, (int) x[0], (int) x[1], (int) x[2], (int) x[3]); pop_output(ctx); } // emit_GLSL_DEFI static void emit_GLSL_TEXCOORD(Context *ctx) { // this opcode looks and acts differently depending on the shader model. //if (shader_version_atleast(ctx, 1, 4)) // emit_D3D_opcode_dss(ctx, "texcrd"); //else // emit_D3D_opcode_d(ctx, "texcoord"); fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXCOORD static void emit_GLSL_TEXKILL(Context *ctx) { const char *dst0 = get_GLSL_destarg_varname(ctx); output_line(ctx, "if (any(lessThan(%s.xyz, vec3(0.0)))) discard;", dst0); } // emit_GLSL_TEXKILL static void emit_GLSL_TEX(Context *ctx) { // this opcode looks and acts differently depending on the shader model. //if (shader_version_atleast(ctx, 1, 4)) // emit_D3D_opcode_ds(ctx, "tex"); //else // emit_D3D_opcode_d(ctx, "texld"); fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEX static void emit_GLSL_TEXBEM(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXBEM static void emit_GLSL_TEXBEML(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXBEML static void emit_GLSL_TEXREG2AR(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXREG2AR static void emit_GLSL_TEXREG2GB(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXREG2GB static void emit_GLSL_TEXM3X2PAD(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXM3X2PAD static void emit_GLSL_TEXM3X2TEX(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXM3X2TEX static void emit_GLSL_TEXM3X3PAD(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXM3X3PAD static void emit_GLSL_TEXM3X3TEX(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXM3X3TEX static void emit_GLSL_TEXM3X3SPEC(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXM3X3SPEC static void emit_GLSL_TEXM3X3VSPEC(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXM3X3VSPEC static void emit_GLSL_EXPP(Context *ctx) { // !!! FIXME: msdn's asm docs don't list this opcode, I'll have to check the driver documentation. emit_GLSL_EXP(ctx); // I guess this is just partial precision EXP? } // emit_GLSL_EXPP static void emit_GLSL_LOGP(Context *ctx) { // LOGP is just low-precision LOG, but we'll take the higher precision. emit_GLSL_LOG(ctx); } // emit_GLSL_LOGP // common code between CMP and CND. // !!! FIXME: this code stinks. static void emit_GLSL_comparison_operations(Context *ctx, const char *cmp) { const DestArgInfo *dst = &ctx->dest_arg; const char *src0 = get_GLSL_srcarg_varname(ctx, 0); const char *src1 = get_GLSL_srcarg_varname(ctx, 1); const char *src2 = get_GLSL_srcarg_varname(ctx, 2); if (dst->writemask == 0x0) return; // nothing to do, drop out early. // !!! FIXME: for replicate swizzles, don't redo compares... if (replicate_swizzle(ctx->source_args[0].swizzle)) { const char swiz = swizzle_channels[ctx->source_args[0].swizzle_x]; if (dst->writemask == 0xF) { const char *code = make_GLSL_destarg_assign(ctx, "((%s.%c %s) ? %s : %s)", src0, swiz, cmp, src1, src2); output_line(ctx, "%s", code); } // if else { const char *dst0 = get_GLSL_destarg_varname(ctx); const char *x1 = (dst->writemask0) ? src1 : dst0; const char *y1 = (dst->writemask1) ? src1 : dst0; const char *z1 = (dst->writemask2) ? src1 : dst0; const char *w1 = (dst->writemask3) ? src1 : dst0; const char *x2 = (dst->writemask0) ? src2 : dst0; const char *y2 = (dst->writemask1) ? src2 : dst0; const char *z2 = (dst->writemask2) ? src2 : dst0; const char *w2 = (dst->writemask3) ? src2 : dst0; const char *code1 = make_GLSL_destarg_assign(ctx, "vec4(%s.x, %s.y, %s.z, %s.w)", x1, y1, z1, w1); const char *code2 = make_GLSL_destarg_assign(ctx, "vec4(%s.x, %s.y, %s.z, %s.w)", x2, y2, z2, w2); output_line(ctx, "if (%s.%c %s) {", src0, swiz, cmp); ctx->indent++; output_line(ctx, "%s", code1); ctx->indent--; output_line(ctx, "} else {"); ctx->indent++; output_line(ctx, "%s", code2); ctx->indent--; output_line(ctx, "}"); } // else } // if else { if (dst->writemask0) { fail(ctx, "!!! FIXME: need to figure out source swizzle here"); const char *code = make_GLSL_destarg_assign(ctx, "((%s.x %s) ? %s.x : %s.x)", src0, cmp, src1, src2); output_line(ctx, "%s", code); } // if if (dst->writemask1) { fail(ctx, "!!! FIXME: need to figure out source swizzle here"); const char *code = make_GLSL_destarg_assign(ctx, "((%s.y %s) ? %s.y : %s.y)", src0, cmp, src1, src2); output_line(ctx, "%s", code); } // if if (dst->writemask2) { fail(ctx, "!!! FIXME: need to figure out source swizzle here"); const char *code = make_GLSL_destarg_assign(ctx, "((%s.z %s) ? %s.z : %s.z)", src0, cmp, src1, src2); output_line(ctx, "%s", code); } // if if (dst->writemask3) { fail(ctx, "!!! FIXME: need to figure out source swizzle here"); const char *code = make_GLSL_destarg_assign(ctx, "((%s.w %s) ? %s.w : %s.w)", src0, cmp, src1, src2); output_line(ctx, "%s", code); } // if } // else } // emit_GLSL_comparison_operations static void emit_GLSL_CND(Context *ctx) { emit_GLSL_comparison_operations(ctx, "> 0.5"); } // emit_GLSL_CND static void emit_GLSL_DEF(Context *ctx) { const char *varname = get_GLSL_destarg_varname(ctx); const float *val = (const float *) ctx->dwords; // !!! FIXME: could be int? char val0[32]; char val1[32]; char val2[32]; char val3[32]; floatstr(ctx, val0, sizeof (val0), val[0], 1); floatstr(ctx, val1, sizeof (val1), val[1], 1); floatstr(ctx, val2, sizeof (val2), val[2], 1); floatstr(ctx, val3, sizeof (val3), val[3], 1); push_output(ctx, &ctx->globals); output_line(ctx, "const vec4 %s = vec4(%s, %s, %s, %s);", varname, val0, val1, val2, val3); pop_output(ctx); } // emit_GLSL_DEF static void emit_GLSL_TEXREG2RGB(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXREG2RGB static void emit_GLSL_TEXDP3TEX(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXDP3TEX static void emit_GLSL_TEXM3X2DEPTH(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXM3X2DEPTH static void emit_GLSL_TEXDP3(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXDP3 static void emit_GLSL_TEXM3X3(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXM3X3 static void emit_GLSL_TEXDEPTH(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXDEPTH static void emit_GLSL_CMP(Context *ctx) { emit_GLSL_comparison_operations(ctx, ">= 0.0"); } // emit_GLSL_CMP static void emit_GLSL_BEM(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_BEM static void emit_GLSL_DP2ADD(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_vec2(ctx, 0); const char *src1 = make_GLSL_srcarg_string_vec2(ctx, 1); const char *src2 = make_GLSL_srcarg_string_scalar(ctx, 2); char extra[64]; snprintf(extra, sizeof (extra), " + %s", src2); emit_GLSL_dotprod(ctx, src0, src1, extra); } // emit_GLSL_DP2ADD static void emit_GLSL_DSX(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *code = make_GLSL_destarg_assign(ctx, "dFdx(%s)", src0); output_line(ctx, "%s", code); } // emit_GLSL_DSX static void emit_GLSL_DSY(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *code = make_GLSL_destarg_assign(ctx, "dFdy(%s)", src0); output_line(ctx, "%s", code); } // emit_GLSL_DSY static void emit_GLSL_TEXLDD(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXLDD static void emit_GLSL_SETP(Context *ctx) { const int vecsize = vecsize_from_writemask(ctx->dest_arg.writemask); const char *src0 = make_GLSL_srcarg_string_masked(ctx, 0); const char *src1 = make_GLSL_srcarg_string_masked(ctx, 1); const char *code = NULL; // destination is always predicate register (which is type bvec4). if (vecsize == 1) { const char *comp = get_GLSL_comparison_string_scalar(ctx); code = make_GLSL_destarg_assign(ctx, "(%s %s %s)", src0, comp, src1); } // if else { const char *comp = get_GLSL_comparison_string_vector(ctx); code = make_GLSL_destarg_assign(ctx, "%s(%s, %s)", comp, src0, src1); } // else output_line(ctx, "%s", code); } // emit_GLSL_SETP static void emit_GLSL_TEXLDL(Context *ctx) { fail(ctx, "unimplemented."); // !!! FIXME } // emit_GLSL_TEXLDL static void emit_GLSL_BREAKP(Context *ctx) { const char *src0 = make_GLSL_srcarg_string_scalar(ctx, 0); output_line(ctx, "if (%s) { break; }", src0); } // emit_GLSL_BREAKP static void emit_GLSL_RESERVED(Context *ctx) { // do nothing; fails in the state machine. } // emit_GLSL_RESERVED #endif // SUPPORT_PROFILE_GLSL #if !AT_LEAST_ONE_PROFILE #error No profiles are supported. Fix your build. #endif #define DEFINE_PROFILE(prof) { \ MOJOSHADER_PROFILE_##prof, \ emit_##prof##_start, \ emit_##prof##_end, \ emit_##prof##_global, \ emit_##prof##_uniform, \ emit_##prof##_sampler, \ emit_##prof##_attribute, \ emit_##prof##_finalize, \ }, static const Profile profiles[] = { #if SUPPORT_PROFILE_D3D DEFINE_PROFILE(D3D) #endif #if SUPPORT_PROFILE_PASSTHROUGH DEFINE_PROFILE(PASSTHROUGH) #endif #if SUPPORT_PROFILE_GLSL DEFINE_PROFILE(GLSL) #endif }; #undef DEFINE_PROFILE // The PROFILE_EMITTER_* items MUST be in the same order as profiles[]! #define PROFILE_EMITTERS(op) { \ PROFILE_EMITTER_D3D(op) \ PROFILE_EMITTER_PASSTHROUGH(op) \ PROFILE_EMITTER_GLSL(op) \ } static int parse_destination_token(Context *ctx, DestArgInfo *info) { // !!! FIXME: recheck against the spec for ranges (like RASTOUT values, etc). if (isfail(ctx)) return FAIL; // already failed elsewhere. if (ctx->tokencount == 0) return fail(ctx, "Out of tokens in destination parameter"); const uint32 token = SWAP32(*(ctx->tokens)); const int reserved1 = (int) ((token >> 14) & 0x3); // bits 14 through 15 const int reserved2 = (int) ((token >> 31) & 0x1); // bit 31 info->token = ctx->tokens; info->regnum = (int) (token & 0x7ff); // bits 0 through 10 info->relative = (int) ((token >> 13) & 0x1); // bit 13 info->writemask = (int) ((token >> 16) & 0xF); // bits 16 through 19 info->writemask0 = (int) ((token >> 16) & 0x1); // bit 16 info->writemask1 = (int) ((token >> 17) & 0x1); // bit 17 info->writemask2 = (int) ((token >> 18) & 0x1); // bit 18 info->writemask3 = (int) ((token >> 19) & 0x1); // bit 19 info->result_mod = (int) ((token >> 20) & 0xF); // bits 20 through 23 info->result_shift = (int) ((token >> 24) & 0xF); // bits 24 through 27 abc info->regtype = (RegisterType) (((token >> 28) & 0x7) | ((token >> 8) & 0x18)); // bits 28-30, 11-12 // all the REG_TYPE_CONSTx types are the same register type, it's just // split up so its regnum can be > 2047 in the bytecode. Clean it up. if (info->regtype == REG_TYPE_CONST2) { info->regtype = REG_TYPE_CONST; info->regnum += 2048; } // else if else if (info->regtype == REG_TYPE_CONST3) { info->regtype = REG_TYPE_CONST; info->regnum += 4096; } // else if else if (info->regtype == REG_TYPE_CONST4) { info->regtype = REG_TYPE_CONST; info->regnum += 6144; } // else if ctx->tokens++; // swallow token for now, for multiple calls in a row. ctx->tokencount--; // swallow token for now, for multiple calls in a row. if (reserved1 != 0x0) return fail(ctx, "Reserved bit #1 in destination token must be zero"); if (reserved2 != 0x1) return fail(ctx, "Reserved bit #2 in destination token must be one"); if (info->relative) { if (!shader_is_vertex(ctx)) return fail(ctx, "Relative addressing in non-vertex shader"); else if (!shader_version_atleast(ctx, 3, 0)) return fail(ctx, "Relative addressing in vertex shader version < 3.0"); // !!! FIXME: I don't have a shader that has a relative dest currently. return fail(ctx, "Relative addressing of dest tokens is unsupported"); } // if const int s = info->result_shift; if (s != 0) { if (!shader_is_pixel(ctx)) return fail(ctx, "Result shift scale in non-pixel shader"); else if (shader_version_atleast(ctx, 2, 0)) return fail(ctx, "Result shift scale in pixel shader version >= 2.0"); else if ( ! (((s >= 1) && (s <= 3)) || ((s >= 0xD) && (s <= 0xF))) ) return fail(ctx, "Result shift scale isn't 1 to 3, or 13 to 15."); } // if if (info->result_mod & MOD_PP) // Partial precision (pixel shaders only) { if (!shader_is_pixel(ctx)) return fail(ctx, "Partial precision result mod in non-pixel shader"); } // if if (info->result_mod & MOD_CENTROID) // Centroid (pixel shaders only) { if (!shader_is_pixel(ctx)) return fail(ctx, "Centroid result mod in non-pixel shader"); } // if if ((info->regtype < 0) || (info->regtype > REG_TYPE_MAX)) return fail(ctx, "Register type is out of range"); // !!! FIXME: from msdn: // "_sat cannot be used with instructions writing to output o# registers." // !!! FIXME: actually, just go over this page: // http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/directx9_c/directx/graphics/reference/shaders/ps_instructionmodifiers.asp set_used_register(ctx, info->regtype, info->regnum); return 1; } // parse_destination_token static int parse_source_token(Context *ctx, SourceArgInfo *info) { int retval = 1; if (isfail(ctx)) return FAIL; // already failed elsewhere. if (ctx->tokencount == 0) return fail(ctx, "Out of tokens in source parameter"); const uint32 token = SWAP32(*(ctx->tokens)); const int reserved1 = (int) ((token >> 14) & 0x3); // bits 14 through 15 const int reserved2 = (int) ((token >> 31) & 0x1); // bit 31 info->token = ctx->tokens; info->regnum = (int) (token & 0x7ff); // bits 0 through 10 info->relative = (int) ((token >> 13) & 0x1); // bit 13 info->swizzle = (int) ((token >> 16) & 0xFF); // bits 16 through 23 info->swizzle_x = (int) ((token >> 16) & 0x3); // bits 16 through 17 info->swizzle_y = (int) ((token >> 18) & 0x3); // bits 18 through 19 info->swizzle_z = (int) ((token >> 20) & 0x3); // bits 20 through 21 info->swizzle_w = (int) ((token >> 22) & 0x3); // bits 22 through 23 info->src_mod = (SourceMod) ((token >> 24) & 0xF); // bits 24 through 27 info->regtype = (RegisterType) (((token >> 28) & 0x7) | ((token >> 8) & 0x18)); // bits 28-30, 11-12 // all the REG_TYPE_CONSTx types are the same register type, it's just // split up so its regnum can be > 2047 in the bytecode. Clean it up. if (info->regtype == REG_TYPE_CONST2) { info->regtype = REG_TYPE_CONST; info->regnum += 2048; } // else if else if (info->regtype == REG_TYPE_CONST3) { info->regtype = REG_TYPE_CONST; info->regnum += 4096; } // else if else if (info->regtype == REG_TYPE_CONST4) { info->regtype = REG_TYPE_CONST; info->regnum += 6144; } // else if ctx->tokens++; // swallow token for now, for multiple calls in a row. ctx->tokencount--; // swallow token for now, for multiple calls in a row. if (reserved1 != 0x0) return fail(ctx, "Reserved bits #1 in source token must be zero"); if (reserved2 != 0x1) return fail(ctx, "Reserved bit #2 in source token must be one"); if (info->relative) { if ( (shader_is_pixel(ctx)) && (!shader_version_atleast(ctx, 3, 0)) ) return fail(ctx, "Relative addressing in pixel shader version < 3.0"); if (ctx->tokencount == 0) return fail(ctx, "Out of tokens in relative source parameter"); const uint32 reltoken = SWAP32(*(ctx->tokens)); ctx->tokens++; // swallow token for now, for multiple calls in a row. ctx->tokencount--; // swallow token for now, for multiple calls in a row. const int relswiz = (int) ((reltoken >> 16) & 0xFF); info->relative_component = relswiz & 0x3; info->relative_regnum = (int) (reltoken & 0x7ff); info->relative_regtype = (RegisterType) (((reltoken >> 28) & 0x7) | ((reltoken >> 8) & 0x18)); if (((reltoken >> 31) & 0x1) == 0) return fail(ctx, "bit #31 in relative address must be set"); if ((reltoken & 0xF00E000) != 0) // usused bits. return fail(ctx, "relative address reserved bit must be zero"); switch (info->relative_regtype) { case REG_TYPE_LOOP: case REG_TYPE_ADDRESS: break; default: return fail(ctx, "invalid register for relative address"); break; } // switch if (info->relative_regnum != 0) // true for now. return fail(ctx, "invalid register for relative address"); if (info->regtype != REG_TYPE_CONST) return fail(ctx, "relative addressing of non-const register"); if (!replicate_swizzle(relswiz)) return fail(ctx, "relative address needs replicate swizzle"); set_used_register(ctx, info->relative_regtype, info->relative_regnum); retval++; } // if if ( info->src_mod >= SRCMOD_TOTAL ) return fail(ctx, "Unknown source modifier"); set_used_register(ctx, info->regtype, info->regnum); return retval; } // parse_source_token static int parse_predicated_token(Context *ctx) { SourceArgInfo *arg = &ctx->predicate_arg; if (parse_source_token(ctx, arg) == FAIL) return FAIL; if (arg->regtype != REG_TYPE_PREDICATE) return fail(ctx, "Predicated instruction but not predicate register!"); if ((arg->src_mod != SRCMOD_NONE) && (arg->src_mod != SRCMOD_NOT)) return fail(ctx, "Predicated instruction register is not NONE or NOT"); // 0xE4 == 11100100 ... 3 2 1 0. No swizzle. if ( (arg->swizzle != 0xE4) && (!replicate_swizzle(arg->swizzle)) ) return fail(ctx, "Predicated instruction register has wrong swizzle"); if (arg->relative) // I'm pretty sure this is illegal...? return fail(ctx, "relative addressing in predicated token"); return 1; } // parse_predicated_token static int parse_args_NULL(Context *ctx) { return (isfail(ctx) ? FAIL : 1); } // parse_args_NULL static int parse_args_DEF(Context *ctx) { if (parse_destination_token(ctx, &ctx->dest_arg) == FAIL) return FAIL; if (ctx->dest_arg.relative) // I'm pretty sure this is illegal...? return fail(ctx, "relative addressing in DEFB"); ctx->dwords[0] = SWAP32(ctx->tokens[0]); ctx->dwords[1] = SWAP32(ctx->tokens[1]); ctx->dwords[2] = SWAP32(ctx->tokens[2]); ctx->dwords[3] = SWAP32(ctx->tokens[3]); return 6; } // parse_args_DEF static int parse_args_DEFB(Context *ctx) { if (parse_destination_token(ctx, &ctx->dest_arg) == FAIL) return FAIL; if (ctx->dest_arg.relative) // I'm pretty sure this is illegal...? return fail(ctx, "relative addressing in DEFB"); ctx->dwords[0] = *(ctx->tokens) ? 1 : 0; return 3; } // parse_args_DEFB // !!! FIXME: this function is kind of a mess. static int parse_args_DCL(Context *ctx) { int unsupported = 0; const uint32 token = SWAP32(*(ctx->tokens)); const int reserved1 = (int) ((token >> 31) & 0x1); // bit 31 uint32 reserved_mask = 0x00000000; if (reserved1 != 0x1) return fail(ctx, "Bit #31 in DCL token must be one"); ctx->tokens++; ctx->tokencount--; if (parse_destination_token(ctx, &ctx->dest_arg) == FAIL) return FAIL; if (ctx->dest_arg.relative) // I'm pretty sure this is illegal...? return fail(ctx, "relative addressing in DCL"); const RegisterType regtype = ctx->dest_arg.regtype; const int regnum = ctx->dest_arg.regnum; if ( (shader_is_pixel(ctx)) && (shader_version_atleast(ctx, 3, 0)) ) { if (regtype == REG_TYPE_INPUT) { const uint32 usage = (token & 0xF); const uint32 index = ((token >> 16) & 0xF); reserved_mask = 0x7FF0FFE0; ctx->dwords[0] = usage; ctx->dwords[1] = index; } // if else if (regtype == REG_TYPE_MISCTYPE) { const MiscTypeType mt = (MiscTypeType) regnum; if (mt == MISCTYPE_TYPE_POSITION) reserved_mask = 0x7FFFFFFF; else if (mt == MISCTYPE_TYPE_FACE) { reserved_mask = 0x7FFFFFFF; if (ctx->dest_arg.writemask != 0xF) return fail(ctx, "DCL face writemask must be full"); else if (ctx->dest_arg.result_mod != 0) return fail(ctx, "DCL face result modifier must be zero"); else if (ctx->dest_arg.result_shift != 0) return fail(ctx, "DCL face shift scale must be zero"); } // else if else { unsupported = 1; } // else } // else if else if (regtype == REG_TYPE_TEXTURE) { const uint32 usage = (token & 0xF); const uint32 index = ((token >> 16) & 0xF); if (usage == MOJOSHADER_USAGE_TEXCOORD) { if (index > 7) return fail(ctx, "DCL texcoord usage must have 0-7 index"); } // if else if (usage == MOJOSHADER_USAGE_COLOR) { if (index != 0) return fail(ctx, "DCL color usage must have 0 index"); } // else if else { return fail(ctx, "Invalid DCL texture usage"); } // else reserved_mask = 0x7FF0FFE0; ctx->dwords[0] = usage; ctx->dwords[1] = index; } // else if else if (regtype == REG_TYPE_SAMPLER) { reserved_mask = 0x7FFFFFF; ctx->dwords[0] = ((token >> 27) & 0xF); // TextureType } // else if else { unsupported = 1; } // else } // if else if ( (shader_is_pixel(ctx)) && (shader_version_atleast(ctx, 2, 0)) ) { if (regtype == REG_TYPE_INPUT) reserved_mask = 0x7FFFFFFF; else if (regtype == REG_TYPE_TEXTURE) reserved_mask = 0x7FFFFFFF; else if (regtype == REG_TYPE_SAMPLER) { reserved_mask = 0x7FFFFFF; ctx->dwords[0] = ((token >> 27) & 0xF); // TextureType } // else if else { unsupported = 1; } // else } // if else if ( (shader_is_vertex(ctx)) && (shader_version_atleast(ctx, 3, 0)) ) { if ((regtype == REG_TYPE_INPUT) || (regtype == REG_TYPE_OUTPUT)) { const uint32 usage = (token & 0xF); const uint32 index = ((token >> 16) & 0xF); reserved_mask = 0x7FF0FFE0; ctx->dwords[0] = usage; ctx->dwords[1] = index; } // if else { unsupported = 1; } // else } // else if else if ( (shader_is_vertex(ctx)) && (shader_version_atleast(ctx, 2, 0)) ) { if (regtype == REG_TYPE_INPUT) { const uint32 usage = (token & 0xF); const uint32 index = ((token >> 16) & 0xF); reserved_mask = 0x7FF0FFE0; ctx->dwords[0] = usage; ctx->dwords[1] = index; } // if else { unsupported = 1; } // else } // else if else { unsupported = 1; } // else if (unsupported) return fail(ctx, "invalid DCL register type for this shader model"); if ((token & reserved_mask) != 0) return fail(ctx, "reserved bits in DCL dword aren't zero"); return 3; } // parse_args_DCL static int parse_args_D(Context *ctx) { int retval = 1; retval += parse_destination_token(ctx, &ctx->dest_arg); return isfail(ctx) ? FAIL : retval; } // parse_args_D static int parse_args_S(Context *ctx) { int retval = 1; retval += parse_source_token(ctx, &ctx->source_args[0]); return isfail(ctx) ? FAIL : retval; } // parse_args_S static int parse_args_SS(Context *ctx) { int retval = 1; retval += parse_source_token(ctx, &ctx->source_args[0]); retval += parse_source_token(ctx, &ctx->source_args[1]); return isfail(ctx) ? FAIL : retval; } // parse_args_SS static int parse_args_DS(Context *ctx) { int retval = 1; retval += parse_destination_token(ctx, &ctx->dest_arg); retval += parse_source_token(ctx, &ctx->source_args[0]); return isfail(ctx) ? FAIL : retval; } // parse_args_DS static int parse_args_DSS(Context *ctx) { int retval = 1; retval += parse_destination_token(ctx, &ctx->dest_arg); retval += parse_source_token(ctx, &ctx->source_args[0]); retval += parse_source_token(ctx, &ctx->source_args[1]); return isfail(ctx) ? FAIL : retval; } // parse_args_DSS static int parse_args_DSSS(Context *ctx) { int retval = 1; retval += parse_destination_token(ctx, &ctx->dest_arg); retval += parse_source_token(ctx, &ctx->source_args[0]); retval += parse_source_token(ctx, &ctx->source_args[1]); retval += parse_source_token(ctx, &ctx->source_args[2]); return isfail(ctx) ? FAIL : retval; } // parse_args_DSSS static int parse_args_DSSSS(Context *ctx) { int retval = 1; retval += parse_destination_token(ctx, &ctx->dest_arg); retval += parse_source_token(ctx, &ctx->source_args[0]); retval += parse_source_token(ctx, &ctx->source_args[1]); retval += parse_source_token(ctx, &ctx->source_args[2]); retval += parse_source_token(ctx, &ctx->source_args[3]); return isfail(ctx) ? FAIL : retval; } // parse_args_DSSSS static int parse_args_SINCOS(Context *ctx) { // this opcode needs extra registers for sm2 and lower. if (!shader_version_atleast(ctx, 3, 0)) return parse_args_DSSS(ctx); return parse_args_DS(ctx); } // parse_args_SINCOS static int parse_args_TEXCOORD(Context *ctx) { // added extra register in ps_1_4. if (shader_version_atleast(ctx, 1, 4)) return parse_args_DS(ctx); return parse_args_D(ctx); } // parse_args_TEXCOORD static int parse_args_TEX(Context *ctx) { // added extra registers in ps_1_4. if (shader_version_atleast(ctx, 1, 4)) return parse_args_DSS(ctx); return parse_args_D(ctx); } // parse_args_TEX // State machine functions... static void state_DEF(Context *ctx) { const RegisterType regtype = ctx->dest_arg.regtype; const int regnum = ctx->dest_arg.regnum; ctx->instruction_count--; // these don't increase your instruction count. if (regtype != REG_TYPE_CONST) fail(ctx, "DEF token using invalid register"); else set_defined_register(ctx, regtype, regnum); } // state_DEF static void state_DEFI(Context *ctx) { const RegisterType regtype = ctx->dest_arg.regtype; const int regnum = ctx->dest_arg.regnum; ctx->instruction_count--; // these don't increase your instruction count. if (regtype != REG_TYPE_CONSTINT) fail(ctx, "DEFI token using invalid register"); else set_defined_register(ctx, regtype, regnum); } // state_DEFI static void state_DEFB(Context *ctx) { const RegisterType regtype = ctx->dest_arg.regtype; const int regnum = ctx->dest_arg.regnum; ctx->instruction_count--; // these don't increase your instruction count. if (regtype != REG_TYPE_CONSTBOOL) fail(ctx, "DEFB token using invalid register"); else set_defined_register(ctx, regtype, regnum); } // state_DEFB static void state_DCL(Context *ctx) { const DestArgInfo *arg = &ctx->dest_arg; const RegisterType regtype = arg->regtype; const int regnum = arg->regnum; ctx->instruction_count--; // these don't increase your instruction count. // parse_args_DCL() does a lot of state checking before we get here. // !!! FIXME: fail if DCL opcode comes after real instructions. if (shader_is_vertex(ctx)) { const MOJOSHADER_usage usage = (const MOJOSHADER_usage) ctx->dwords[0]; const int index = ctx->dwords[1]; const int writemask = arg->writemask; if (usage >= MOJOSHADER_USAGE_TOTAL) { fail(ctx, "unknown DCL usage"); return; } // if add_attribute_register(ctx, regtype, regnum, usage, index, writemask); } // if else if (shader_is_pixel(ctx)) { if (regtype == REG_TYPE_SAMPLER) { const TextureType ttype = (const TextureType) ctx->dwords[0]; switch (ttype) { case TEXTURE_TYPE_2D: case TEXTURE_TYPE_CUBE: case TEXTURE_TYPE_VOLUME: break; // it's okay. default: fail(ctx, "unknown sampler texture type"); return; } // switch add_sampler(ctx, regtype, regnum, ttype); } // if } // else if else { assert(0 && "Unsupported shader type."); // should be caught elsewhere. } // else set_defined_register(ctx, regtype, regnum); } // state_DCL static void state_FRC(Context *ctx) { const DestArgInfo *dst = &ctx->dest_arg; if (dst->result_mod & MOD_SATURATE) // according to msdn... fail(ctx, "FRC destination can't use saturate modifier"); else if (!shader_version_atleast(ctx, 2, 0)) { if ((dst->writemask != 0x2) && (dst->writemask != 0x3)) fail(ctx, "FRC writemask must be .y or .xy for shader model 1.x"); } // else if } // state_FRC // replicate the matrix registers to source args. The D3D profile will // only use the one legitimate argument, but this saves other profiles // from having to build this. static void srcarg_matrix_replicate(Context *ctx, const int idx, const int rows) { int i; SourceArgInfo *src = &ctx->source_args[idx]; SourceArgInfo *dst = &ctx->source_args[idx+1]; for (i = 0; i < (rows-1); i++, dst++) { memcpy(dst, src, sizeof (SourceArgInfo)); dst->regnum += (i + 1); set_used_register(ctx, dst->regtype, dst->regnum); } // for } // srcarg_matrix_replicate static void state_M4X4(Context *ctx) { const DestArgInfo *info = &ctx->dest_arg; if (info->writemask != 0xF) // 0xF == 1111. No explicit mask. fail(ctx, "M4X4 writemask must be .xyzw"); // !!! FIXME: MSDN: //The xyzw (default) mask is required for the destination register. Negate and swizzle modifiers are allowed for src0, but not for src1. //Swizzle and negate modifiers are invalid for the src0 register. The dest and src0 registers cannot be the same. srcarg_matrix_replicate(ctx, 1, 4); } // state_M4X4 static void state_M4X3(Context *ctx) { const DestArgInfo *info = &ctx->dest_arg; if (info->writemask != 0x7) // 0x7 == 0111. (that is: xyz) fail(ctx, "M4X3 writemask must be .xyz"); // !!! FIXME: MSDN stuff srcarg_matrix_replicate(ctx, 1, 3); } // state_M4X3 static void state_M3X4(Context *ctx) { const DestArgInfo *info = &ctx->dest_arg; if (info->writemask != 0xF) // 0xF == 1111. No explicit mask. fail(ctx, "M3X4 writemask must be .xyzw"); // !!! FIXME: MSDN stuff srcarg_matrix_replicate(ctx, 1, 4); } // state_M3X4 static void state_M3X3(Context *ctx) { const DestArgInfo *info = &ctx->dest_arg; if (info->writemask != 0x7) // 0x7 == 0111. (that is: xyz) fail(ctx, "M3X3 writemask must be .xyz"); // !!! FIXME: MSDN stuff srcarg_matrix_replicate(ctx, 1, 3); } // state_M3X3 static void state_M3X2(Context *ctx) { const DestArgInfo *info = &ctx->dest_arg; if (info->writemask != 0x3) // 0x3 == 0011. (that is: xy) fail(ctx, "M3X2 writemask must be .xy"); // !!! FIXME: MSDN stuff srcarg_matrix_replicate(ctx, 1, 2); } // state_M3X2 static void state_RET(Context *ctx) { // MSDN all but says that assembly shaders are more or less serialized // HLSL functions, and a RET means you're at the end of one, unlike how // most CPUs would behave. This is actually really helpful, // since we can use high-level constructs and not a mess of GOTOs, // which is a godsend for GLSL...this also means we can consider things // like a LOOP without a matching ENDLOOP within a label's section as // an error. if (ctx->loops > 0) fail(ctx, "LOOP without ENDLOOP"); if (ctx->reps > 0) fail(ctx, "REP without ENDREP"); } // state_RET static int check_label_register(Context *ctx, int arg, const char *opcode) { const SourceArgInfo *info = &ctx->source_args[arg]; const RegisterType regtype = info->regtype; const int regnum = info->regnum; if (regtype != REG_TYPE_LABEL) return failf(ctx, "%s with a non-label register specified", opcode); else if (!shader_version_atleast(ctx, 2, 0)) return failf(ctx, "%s not supported in Shader Model 1", opcode); else if ((shader_version_atleast(ctx, 2, 255)) && (regnum > 2047)) return failf(ctx, "label register number must be <= 2047"); else if (regnum > 15) return failf(ctx, "label register number must be <= 15"); return 0; } // check_label_register static void state_LABEL(Context *ctx) { if (ctx->previous_opcode != OPCODE_RET) fail(ctx, "LABEL not followed by a RET"); check_label_register(ctx, 0, "LABEL"); set_defined_register(ctx, REG_TYPE_LABEL, ctx->source_args[0].regnum); } // state_LABEL static void check_call_loop_wrappage(Context *ctx, const int regnum) { // msdn says subroutines inherit aL register if you're in a loop when // you call, and further more _if you ever call this function in a loop, // it must always be called in a loop_. So we'll just pass our loop // variable as a function parameter in those cases. const int current_usage = (ctx->loops > 0) ? 1 : -1; RegisterList *reg = reglist_find(&ctx->used_registers, REG_TYPE_LABEL, regnum); assert(reg != NULL); if (reg->misc == 0) reg->misc = current_usage; else if (reg->misc != current_usage) { if (current_usage == 1) fail(ctx, "CALL to this label must be wrapped in LOOP/ENDLOOP"); else fail(ctx, "CALL to this label must not be wrapped in LOOP/ENDLOOP"); } // else if } // check_call_loop_wrappage static void state_CALL(Context *ctx) { if (check_label_register(ctx, 0, "CALL") != FAIL) check_call_loop_wrappage(ctx, ctx->source_args[0].regnum); } // state_CALL static void state_CALLNZ(Context *ctx) { const RegisterType regtype = ctx->source_args[1].regtype; if ((regtype != REG_TYPE_CONSTBOOL) && (regtype != REG_TYPE_PREDICATE)) fail(ctx, "CALLNZ argument isn't constbool or predicate register"); else if (check_label_register(ctx, 0, "CALLNZ") != FAIL) check_call_loop_wrappage(ctx, ctx->source_args[0].regnum); } // state_CALLNZ static void state_MOVA(Context *ctx) { if (ctx->dest_arg.regtype != REG_TYPE_ADDRESS) fail(ctx, "MOVA argument isn't address register"); } // state_MOVA static void state_RCP(Context *ctx) { if (!replicate_swizzle(ctx->source_args[0].swizzle)) fail(ctx, "RCP without replicate swizzzle"); } // state_RCP static void state_LOOP(Context *ctx) { if (ctx->source_args[0].regtype != REG_TYPE_LOOP) fail(ctx, "LOOP argument isn't loop register"); else if (ctx->source_args[1].regtype != REG_TYPE_CONSTINT) fail(ctx, "LOOP argument isn't constint register"); else ctx->loops++; } // state_LOOP static void state_ENDLOOP(Context *ctx) { // !!! FIXME: check that we aren't straddling an IF block. if (ctx->loops <= 0) fail(ctx, "ENDLOOP without LOOP"); ctx->loops--; } // state_ENDLOOP static void state_BREAKP(Context *ctx) { const RegisterType regtype = ctx->source_args[0].regtype; if (regtype != REG_TYPE_PREDICATE) fail(ctx, "BREAKP argument isn't predicate register"); else if (!replicate_swizzle(ctx->source_args[0].swizzle)) fail(ctx, "BREAKP without replicate swizzzle"); else if ((ctx->loops == 0) && (ctx->reps == 0)) fail(ctx, "BREAKP outside LOOP/ENDLOOP or REP/ENDREP"); } // state_BREAKP static void state_BREAK(Context *ctx) { if ((ctx->loops == 0) && (ctx->reps == 0)) fail(ctx, "BREAK outside LOOP/ENDLOOP or REP/ENDREP"); } // state_BREAK static void state_SETP(Context *ctx) { const RegisterType regtype = ctx->dest_arg.regtype; if (regtype != REG_TYPE_PREDICATE) fail(ctx, "SETP argument isn't predicate register"); } // state_SETP static void state_REP(Context *ctx) { const RegisterType regtype = ctx->source_args[0].regtype; if (regtype != REG_TYPE_CONSTINT) fail(ctx, "REP argument isn't constint register"); ctx->reps++; } // state_REP static void state_ENDREP(Context *ctx) { // !!! FIXME: check that we aren't straddling an IF block. if (ctx->reps <= 0) fail(ctx, "ENDREP without REP"); ctx->reps--; } // state_ENDREP static void state_CMP(Context *ctx) { ctx->cmps++; // extra limitations for ps <= 1.4 ... if (!shader_version_atleast(ctx, 1, 4)) { int i; const DestArgInfo *dst = &ctx->dest_arg; const RegisterType dregtype = dst->regtype; const int dregnum = dst->regnum; if (ctx->cmps > 3) fail(ctx, "only 3 CMP instructions allowed in this shader model"); for (i = 0; i < 3; i++) { const SourceArgInfo *src = &ctx->source_args[i]; const RegisterType sregtype = src->regtype; const int sregnum = src->regnum; if ((dregtype == sregtype) && (dregnum == sregnum)) fail(ctx, "CMP dest can't match sources in this shader model"); } // for } // if } // state_CMP static void state_CND(Context *ctx) { // apparently it was removed...it's not in the docs past ps_1_4 ... if (shader_version_atleast(ctx, 2, 0)) fail(ctx, "CND not allowed in this shader model"); // extra limitations for ps <= 1.4 ... else if (!shader_version_atleast(ctx, 1, 4)) { const SourceArgInfo *src = &ctx->source_args[0]; if ((src->regtype != REG_TYPE_TEMP) || (src->regnum != 0) || (src->swizzle != 0x0000)) { fail(ctx, "CND src must be r0.a in this shader model"); } // if } // if } // state_CND static void state_SINCOS(Context *ctx) { const DestArgInfo *dst = &ctx->dest_arg; const int mask = dst->writemask; if ((mask < 0x1) || (mask > 0x3)) fail(ctx, "SINCOS write mask must be .x or .y or .xy"); else if (!replicate_swizzle(ctx->source_args[0].swizzle)) fail(ctx, "SINCOS src0 must have replicate swizzle"); else if (dst->result_mod & MOD_SATURATE) // according to msdn... fail(ctx, "SINCOS destination can't use saturate modifier"); // this opcode needs extra registers, with extra limitations, for <= sm2. else if (!shader_version_atleast(ctx, 3, 0)) { int i; for (i = 1; i < 3; i++) { if (ctx->source_args[i].regtype != REG_TYPE_CONST) { failf(ctx, "SINCOS src%d must be constfloat", i); return; } // if } // for if (ctx->source_args[1].regnum == ctx->source_args[2].regnum) fail(ctx, "SINCOS src1 and src2 must be different registers"); } // if } // state_SINCOS static void state_IF(Context *ctx) { if (ctx->source_args[0].regtype != REG_TYPE_CONSTBOOL) fail(ctx, "IF src0 must be CONSTBOOL"); // !!! FIXME: track if nesting depth. } // state_IF static void state_IFC(Context *ctx) { if (!replicate_swizzle(ctx->source_args[0].swizzle)) fail(ctx, "IFC src0 must have replicate swizzle"); else if (!replicate_swizzle(ctx->source_args[1].swizzle)) fail(ctx, "IFC src1 must have replicate swizzle"); // !!! FIXME: track if nesting depth. } // state_IFC static void state_BREAKC(Context *ctx) { if (!replicate_swizzle(ctx->source_args[0].swizzle)) fail(ctx, "BREAKC src1 must have replicate swizzle"); else if (!replicate_swizzle(ctx->source_args[1].swizzle)) fail(ctx, "BREAKC src2 must have replicate swizzle"); else if ((ctx->loops == 0) && (ctx->reps == 0)) fail(ctx, "BREAKC outside LOOP/ENDLOOP or REP/ENDREP"); } // state_BREAKC static void state_TEXKILL(Context *ctx) { // The MSDN docs say this should be a source arg, but the driver docs // say it's a dest arg. That's annoying. const DestArgInfo *info = &ctx->dest_arg; const RegisterType regtype = info->regtype; if (info->writemask != 0xF) // 0xF == 1111. No explicit mask. fail(ctx, "TEXKILL writemask must be .xyzw"); else if ((regtype != REG_TYPE_TEMP) && (regtype != REG_TYPE_TEXTURE)) fail(ctx, "TEXKILL must use a temp or texture register"); // !!! FIXME: "If a temporary register is used, all components must have been previously written." // !!! FIXME: "If a texture register is used, all components that are read must have been declared." // !!! FIXME: there are further limitations in ps_1_3 and earlier. } // state_TEXKILL static void state_DP2ADD(Context *ctx) { if (!replicate_swizzle(ctx->source_args[2].swizzle)) fail(ctx, "IFC src2 must have replicate swizzle"); } // state_DP2ADD // Lookup table for instruction opcodes... typedef struct { const char *opcode_string; MOJOSHADER_shaderType shader_types; // mask of types that can use opcode. args_function parse_args; state_function state; emit_function emitter[STATICARRAYLEN(profiles)]; } Instruction; // These have to be in the right order! This array is indexed by the value // of the instruction token. static const Instruction instructions[] = { // INSTRUCTION_STATE means this opcode has to update the state machine // (we're entering an ELSE block, etc). INSTRUCTION means there's no // state, just go straight to the emitters. #define INSTRUCTION_STATE(op, argsseq, t) { \ #op, t, parse_args_##argsseq, state_##op, PROFILE_EMITTERS(op) \ } #define INSTRUCTION(op, argsseq, t) { \ #op, t, parse_args_##argsseq, 0, PROFILE_EMITTERS(op) \ } // !!! FIXME: Some of these MOJOSHADER_TYPE_ANYs need to have their scope // !!! FIXME: reduced to just PIXEL or VERTEX. INSTRUCTION(NOP, NULL, MOJOSHADER_TYPE_ANY), INSTRUCTION(MOV, DS, MOJOSHADER_TYPE_ANY), INSTRUCTION(ADD, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(SUB, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(MAD, DSSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(MUL, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(RCP, DS, MOJOSHADER_TYPE_ANY), INSTRUCTION(RSQ, DS, MOJOSHADER_TYPE_ANY), INSTRUCTION(DP3, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(DP4, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(MIN, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(MAX, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(SLT, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(SGE, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(EXP, DS, MOJOSHADER_TYPE_ANY), INSTRUCTION(LOG, DS, MOJOSHADER_TYPE_ANY), INSTRUCTION(LIT, DS, MOJOSHADER_TYPE_ANY), INSTRUCTION(DST, DSS, MOJOSHADER_TYPE_VERTEX), INSTRUCTION(LRP, DSSS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(FRC, DS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(M4X4, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(M4X3, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(M3X4, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(M3X3, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(M3X2, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(CALL, S, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(CALLNZ, SS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(LOOP, SS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(RET, NULL, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(ENDLOOP, NULL, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(LABEL, S, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(DCL, DCL, MOJOSHADER_TYPE_ANY), INSTRUCTION(POW, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(CRS, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(SGN, DSSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(ABS, DS, MOJOSHADER_TYPE_ANY), INSTRUCTION(NRM, DS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(SINCOS, SINCOS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(REP, S, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(ENDREP, NULL, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(IF, S, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(IFC, SS, MOJOSHADER_TYPE_ANY), INSTRUCTION(ELSE, NULL, MOJOSHADER_TYPE_ANY), // !!! FIXME: state! INSTRUCTION(ENDIF, NULL, MOJOSHADER_TYPE_ANY), // !!! FIXME: state! INSTRUCTION_STATE(BREAK, NULL, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(BREAKC, SS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(MOVA, DS, MOJOSHADER_TYPE_VERTEX), INSTRUCTION_STATE(DEFB, DEFB, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(DEFI, DEF, MOJOSHADER_TYPE_ANY), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(TEXCOORD, TEXCOORD, MOJOSHADER_TYPE_PIXEL), INSTRUCTION_STATE(TEXKILL, D, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEX, TEX, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXBEM, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXBEML, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXREG2AR, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXREG2GB, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXM3X2PAD, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXM3X2TEX, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXM3X3PAD, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXM3X3TEX, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(RESERVED, NULL, MOJOSHADER_TYPE_UNKNOWN), INSTRUCTION(TEXM3X3SPEC, DSS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXM3X3VSPEC, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(EXPP, DS, MOJOSHADER_TYPE_ANY), INSTRUCTION(LOGP, DS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(CND, DSSS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION_STATE(DEF, DEF, MOJOSHADER_TYPE_ANY), INSTRUCTION(TEXREG2RGB, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXDP3TEX, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXM3X2DEPTH, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXDP3, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXM3X3, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXDEPTH, D, MOJOSHADER_TYPE_PIXEL), INSTRUCTION_STATE(CMP, DSSS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(BEM, DSS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION_STATE(DP2ADD, DSSS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(DSX, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(DSY, DS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION(TEXLDD, DSSSS, MOJOSHADER_TYPE_PIXEL), INSTRUCTION_STATE(SETP, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION(TEXLDL, DSS, MOJOSHADER_TYPE_ANY), INSTRUCTION_STATE(BREAKP, S, MOJOSHADER_TYPE_ANY), #undef INSTRUCTION #undef INSTRUCTION_STATE }; // parse various token types... static int parse_instruction_token(Context *ctx) { int retval = NOFAIL; const uint32 *start_tokens = ctx->tokens; const uint32 start_tokencount = ctx->tokencount; const uint32 token = SWAP32(*(ctx->tokens)); const uint32 opcode = (token & 0xFFFF); const uint32 controls = ((token >> 16) & 0xFF); const uint32 insttoks = ((token >> 24) & 0x0F); const int coissue = (token & 0x40000000) ? 1 : 0; const int predicated = (token & 0x10000000) ? 1 : 0; if ( opcode >= (sizeof (instructions) / sizeof (instructions[0])) ) return 0; // not an instruction token, or just not handled here. const Instruction *instruction = &instructions[opcode]; const emit_function emitter = instruction->emitter[ctx->profileid]; if ((token & 0x80000000) != 0) return fail(ctx, "instruction token high bit must be zero."); // so says msdn. if (coissue) { if (!shader_is_pixel(ctx)) return fail(ctx, "coissue instruction on non-pixel shader"); else if (shader_version_atleast(ctx, 2, 0)) return fail(ctx, "coissue instruction in Shader Model >= 2.0"); // !!! FIXME: I'm not sure what this actually means, yet. return fail(ctx, "coissue instructions unsupported"); } // if if ((ctx->shader_type & instruction->shader_types) == 0) { return failf(ctx, "opcode '%s' not available in this shader type.", instruction->opcode_string); } // if memset(ctx->dwords, '\0', sizeof (ctx->dwords)); ctx->instruction_count++; ctx->instruction_controls = controls; ctx->predicated = predicated; // Update the context with instruction's arguments. ctx->tokens++; ctx->tokencount--; retval = instruction->parse_args(ctx); assert((isfail(ctx)) || (retval >= 0)); if ( (!isfail(ctx)) && (predicated) ) { if (parse_predicated_token(ctx) != FAIL) retval++; // one more token. } // if // parse_args() moves these forward for convenience...reset them. ctx->tokens = start_tokens; ctx->tokencount = start_tokencount; if (!isfail(ctx)) { if (instruction->state != NULL) instruction->state(ctx); } // if if (isfail(ctx)) retval = FAIL; else emitter(ctx); // call the profile's emitter. ctx->previous_opcode = opcode; if (!isfail(ctx)) { if (!shader_version_atleast(ctx, 2, 0)) { if (insttoks != 0) // reserved field in shaders < 2.0 ... return fail(ctx, "instruction token count must be zero"); } // if else { if (retval != (insttoks+1)) { return failf(ctx, "wrong token count (%u, not %u) for opcode '%s'.", (uint) retval, (uint) (insttoks+1), instruction->opcode_string); } // if } // else } // if return retval; } // parse_instruction_token static int parse_version_token(Context *ctx) { if (isfail(ctx)) // catch preexisting errors here. return FAIL; if (ctx->tokencount == 0) return fail(ctx, "Expected version token, got none at all."); const uint32 token = SWAP32(*(ctx->tokens)); const uint32 shadertype = ((token >> 16) & 0xFFFF); const uint8 major = (uint8) ((token >> 8) & 0xFF); const uint8 minor = (uint8) (token & 0xFF); // 0xFFFF == pixel shader, 0xFFFE == vertex shader if (shadertype == 0xFFFF) ctx->shader_type = MOJOSHADER_TYPE_PIXEL; else if (shadertype == 0xFFFE) ctx->shader_type = MOJOSHADER_TYPE_VERTEX; else // geometry shader? Bogus data? return fail(ctx, "Unsupported shader type or not a shader at all"); ctx->major_ver = major; ctx->minor_ver = minor; if (!shader_version_supported(major, minor)) { return failf(ctx, "Shader Model %u.%u is currently unsupported.", (uint) major, (uint) minor); } // if ctx->profile->start_emitter(ctx); return 1; // ate one token. } // parse_version_token static int parse_comment_token(Context *ctx) { const uint32 token = SWAP32(*(ctx->tokens)); if ((token & 0xFFFF) != 0xFFFE) return 0; // not a comment token. else if ((token & 0x80000000) != 0) return fail(ctx, "comment token high bit must be zero."); // so says msdn. else { const uint32 commenttoks = ((token >> 16) & 0xFFFF); return commenttoks + 1; // comment data plus the initial token. } // else // shouldn't hit this. return failf(ctx, "Logic error at %s:%d", __FILE__, __LINE__); } // parse_comment_token static int parse_end_token(Context *ctx) { if (SWAP32(*(ctx->tokens)) != 0x0000FFFF) // end token always 0x0000FFFF. return 0; // not us, eat no tokens. if (ctx->tokencount != 1) // we _must_ be last. If not: fail. return fail(ctx, "end token before end of stream"); ctx->profile->end_emitter(ctx); return END_OF_STREAM; } // parse_end_token static int parse_phase_token(Context *ctx) { if (SWAP32(*(ctx->tokens)) != 0x0000FFFD) // phase token always 0x0000FFFD. return 0; // not us, eat no tokens. return fail(ctx, "not sure what this thing is yet."); } // parse_phase_token static int parse_token(Context *ctx) { int rc = 0; if (isfail(ctx)) return FAIL; // just in case...catch previously unhandled fails here. if (ctx->output_stack_len != 0) return fail(ctx, "BUG: output stack isn't empty on new token!"); if (ctx->tokencount == 0) return fail(ctx, "unexpected end of shader."); if ((rc = parse_comment_token(ctx)) != 0) return rc; if ((rc = parse_end_token(ctx)) != 0) return rc; if ((rc = parse_phase_token(ctx)) != 0) return rc; if ((rc = parse_instruction_token(ctx)) != 0) return rc; return failf(ctx, "unknown token (%u)", (uint) *ctx->tokens); } // parse_token // #define this to force app to supply an allocator, so there's no reference // to the C runtime's malloc() and free()... #if MOJOSHADER_FORCE_ALLOCATOR #define internal_malloc NULL #define internal_free NULL #else static void *internal_malloc(int bytes, void *d) { return malloc(bytes); } static void internal_free(void *ptr, void *d) { free(ptr); } #endif static int find_profile_id(const char *profile) { int i; for (i = 0; i < STATICARRAYLEN(profiles); i++) { const char *name = profiles[i].name; if (strcmp(name, profile) == 0) return i; } // for return -1; // no match. } // find_profile_id static Context *build_context(const char *profile, const unsigned char *tokenbuf, const unsigned int bufsize, MOJOSHADER_malloc m, MOJOSHADER_free f, void *d) { if (m == NULL) m = internal_malloc; if (f == NULL) f = internal_free; Context *ctx = (Context *) m(sizeof (Context), d); if (ctx == NULL) return NULL; memset(ctx, '\0', sizeof (Context)); ctx->malloc = m; ctx->free = f; ctx->malloc_data = d; ctx->tokens = (const uint32 *) tokenbuf; ctx->tokencount = bufsize / sizeof (uint32); ctx->endline = endline_str; ctx->endline_len = strlen(ctx->endline); ctx->globals.tail = &ctx->globals.head; ctx->helpers.tail = &ctx->helpers.head; ctx->subroutines.tail = &ctx->subroutines.head; ctx->mainline_intro.tail = &ctx->mainline_intro.head; ctx->mainline.tail = &ctx->mainline.head; ctx->ignore.tail = &ctx->ignore.head; ctx->output = &ctx->mainline; const int profileid = find_profile_id(profile); ctx->profileid = profileid; if (profileid >= 0) ctx->profile = &profiles[profileid]; else failf(ctx, "Profile '%s' is unknown or unsupported", profile); return ctx; } // build_context static void free_output_list(MOJOSHADER_free f, void *d, OutputListNode *item) { while (item != NULL) { OutputListNode *next = item->next; if (item->str != NULL) f(item->str, d); f(item, d); item = next; } // while } // free_output_list static void destroy_context(Context *ctx) { if (ctx != NULL) { MOJOSHADER_free f = ((ctx->free != NULL) ? ctx->free : internal_free); void *d = ctx->malloc_data; if (ctx->output_bytes != NULL) f(d, ctx->output_bytes); free_output_list(f, d, ctx->globals.head.next); free_output_list(f, d, ctx->helpers.head.next); free_output_list(f, d, ctx->subroutines.head.next); free_output_list(f, d, ctx->mainline_intro.head.next); free_output_list(f, d, ctx->mainline.head.next); free_output_list(f, d, ctx->ignore.head.next); free_reglist(f, d, ctx->used_registers.next); free_reglist(f, d, ctx->defined_registers.next); free_reglist(f, d, ctx->uniforms.next); free_reglist(f, d, ctx->attributes.next); free_reglist(f, d, ctx->samplers.next); if ((ctx->failstr != NULL) && (ctx->failstr != out_of_mem_str)) f((void *) ctx->failstr, d); f(ctx, d); } // if } // destroy_context static void append_list(char **_wptr, const char *endline, const size_t endline_len, OutputListNode *item) { char *wptr = *_wptr; while (item != NULL) { const size_t len = strlen(item->str); memcpy(wptr, item->str, len); wptr += len; memcpy(wptr, endline, endline_len); wptr += endline_len; item = item->next; } // while *wptr = '\0'; *_wptr = wptr; } // append_list static char *build_output(Context *ctx) { // add a byte for the null terminator if we're doing text output. const int plusbytes = (ctx->output_bytes == NULL) ? 1 : 0; char *retval = (char *) Malloc(ctx, ctx->output_len + plusbytes); if (retval != NULL) { const char *endl = ctx->endline; const size_t endllen = ctx->endline_len; char *wptr = retval; if (ctx->output_bytes != NULL) memcpy(retval, ctx->output_bytes, ctx->output_len); else { append_list(&wptr, endl, endllen, ctx->globals.head.next); append_list(&wptr, endl, endllen, ctx->helpers.head.next); append_list(&wptr, endl, endllen, ctx->subroutines.head.next); append_list(&wptr, endl, endllen, ctx->mainline_intro.head.next); append_list(&wptr, endl, endllen, ctx->mainline.head.next); // don't append ctx->ignore ... that's why it's called "ignore" } // else } // if return retval; } // build_output static char *alloc_varname(Context *ctx, const RegisterList *reg) { const char *varname = get_GLSL_varname(ctx, reg->regtype, reg->regnum); const size_t len = strlen(varname) + 1; char *retval = (char *) Malloc(ctx, len); if (retval != NULL) strcpy(retval, varname); return retval; } // alloc_varname static MOJOSHADER_uniform *build_uniforms(Context *ctx) { const size_t len = sizeof (MOJOSHADER_uniform) * ctx->uniform_count; MOJOSHADER_uniform *retval = (MOJOSHADER_uniform *) Malloc(ctx, len); if (retval != NULL) { RegisterList *item = ctx->uniforms.next; MOJOSHADER_uniformType type = MOJOSHADER_UNIFORM_FLOAT; int index = 0; int i; memset(retval, '\0', len); for (i = 0; i < ctx->uniform_count; i++) { if (item == NULL) { fail(ctx, "BUG: mismatched uniform list and count"); break; } // if index = item->regnum; switch (item->regtype) { case REG_TYPE_CONST: type = MOJOSHADER_UNIFORM_FLOAT; break; case REG_TYPE_CONSTINT: type = MOJOSHADER_UNIFORM_INT; break; case REG_TYPE_CONSTBOOL: type = MOJOSHADER_UNIFORM_BOOL; break; default: fail(ctx, "unknown uniform datatype"); break; } // switch retval[i].type = type; retval[i].index = index; retval[i].name = alloc_varname(ctx, item); item = item->next; } // for } // if return retval; } // build_uniforms static MOJOSHADER_sampler *build_samplers(Context *ctx) { const size_t len = sizeof (MOJOSHADER_sampler) * ctx->sampler_count; MOJOSHADER_sampler *retval = (MOJOSHADER_sampler *) Malloc(ctx, len); if (retval != NULL) { RegisterList *item = ctx->samplers.next; MOJOSHADER_samplerType type = MOJOSHADER_SAMPLER_2D; int i; memset(retval, '\0', len); for (i = 0; i < ctx->sampler_count; i++) { if (item == NULL) { fail(ctx, "BUG: mismatched sampler list and count"); break; } // if assert(item->regtype == REG_TYPE_SAMPLER); switch ((const TextureType) item->index) { case TEXTURE_TYPE_2D: type = MOJOSHADER_SAMPLER_2D; break; case TEXTURE_TYPE_CUBE: type = MOJOSHADER_SAMPLER_CUBE; break; case TEXTURE_TYPE_VOLUME: type = MOJOSHADER_SAMPLER_VOLUME; break; default: fail(ctx, "Unknown sampler type"); break; } // switch retval[i].type = type; retval[i].index = item->regnum; retval[i].name = alloc_varname(ctx, item); item = item->next; } // for } // if return retval; } // build_samplers static MOJOSHADER_attribute *build_attributes(Context *ctx, int *_count) { int count = 0; if (ctx->attribute_count == 0) { *_count = 0; return NULL; // nothing to do. } // if const size_t len = sizeof (MOJOSHADER_attribute) * ctx->attribute_count; MOJOSHADER_attribute *retval = (MOJOSHADER_attribute *) Malloc(ctx, len); if (retval != NULL) { RegisterList *item = ctx->attributes.next; MOJOSHADER_attribute *wptr = retval; int is_output = 0; int i; memset(retval, '\0', len); for (i = 0; i < ctx->attribute_count; i++) { if (item == NULL) { fail(ctx, "BUG: mismatched attribute list and count"); break; } // if switch (item->regtype) { case REG_TYPE_RASTOUT: case REG_TYPE_ATTROUT: case REG_TYPE_TEXCRDOUT: case REG_TYPE_COLOROUT: case REG_TYPE_DEPTHOUT: is_output = 1; break; default: is_output = 0; break; } // switch if (!is_output) { if (shader_is_pixel(ctx)) { fail(ctx, "BUG: pixel shader with vertex attributes"); break; } // if else { wptr->usage = item->usage; wptr->index = item->index; wptr->name = alloc_varname(ctx, item); wptr++; count++; } // else } // if item = item->next; } // for } // if *_count = count; return retval; } // build_attributes static MOJOSHADER_parseData *build_parsedata(Context *ctx) { char *output = NULL; MOJOSHADER_uniform *uniforms = NULL; MOJOSHADER_attribute *attributes = NULL; MOJOSHADER_sampler *samplers = NULL; MOJOSHADER_parseData *retval = NULL; int attribute_count = 0; retval = (MOJOSHADER_parseData*) Malloc(ctx, sizeof(MOJOSHADER_parseData)); if (retval == NULL) return &out_of_mem_data; memset(retval, '\0', sizeof (MOJOSHADER_parseData)); if (!isfail(ctx)) output = build_output(ctx); if (!isfail(ctx)) uniforms = build_uniforms(ctx); if (!isfail(ctx)) attributes = build_attributes(ctx, &attribute_count); if (!isfail(ctx)) samplers = build_samplers(ctx); // check again, in case build_output ran out of memory. if (isfail(ctx)) { int i; Free(ctx, output); if (uniforms != NULL) { for (i = 0; i < ctx->uniform_count; i++) Free(ctx, (void *) uniforms[i].name); Free(ctx, uniforms); } // if if (attributes != NULL) { for (i = 0; i < attribute_count; i++) Free(ctx, (void *) attributes[i].name); Free(ctx, attributes); } // if if (samplers != NULL) { for (i = 0; i < ctx->sampler_count; i++) Free(ctx, (void *) samplers[i].name); Free(ctx, samplers); } // if retval->error = ctx->failstr; // we recycle. :) ctx->failstr = NULL; // don't let this get free()'d too soon. } // if else { retval->profile = ctx->profile->name; retval->output = output; retval->output_len = ctx->output_len; retval->instruction_count = ctx->instruction_count; retval->shader_type = ctx->shader_type; retval->major_ver = (int) ctx->major_ver; retval->minor_ver = (int) ctx->minor_ver; retval->uniform_count = ctx->uniform_count; retval->uniforms = uniforms; retval->attribute_count = attribute_count; retval->attributes = attributes; retval->sampler_count = ctx->sampler_count; retval->samplers = samplers; } // else retval->malloc = (ctx->malloc == internal_malloc) ? NULL : ctx->malloc; retval->free = (ctx->free == internal_free) ? NULL : ctx->free; retval->malloc_data = ctx->malloc_data; return retval; } // build_parsedata static void process_definitions(Context *ctx) { RegisterList *uitem = &ctx->uniforms; RegisterList *prev = &ctx->used_registers; RegisterList *item = prev->next; while (item != NULL) { RegisterList *next = item->next; const RegisterType regtype = item->regtype; const int regnum = item->regnum; if (!get_defined_register(ctx, regtype, regnum)) { // haven't already dealt with this one. switch (regtype) { // !!! FIXME: I'm not entirely sure this is right... case REG_TYPE_RASTOUT: case REG_TYPE_ATTROUT: case REG_TYPE_TEXCRDOUT: case REG_TYPE_COLOROUT: case REG_TYPE_DEPTHOUT: if (shader_is_vertex(ctx)&&shader_version_atleast(ctx,3,0)) { fail(ctx, "vs_3 can't use output registers" " without declaring them first."); return; } // if // Apparently this is an attribute that wasn't DCL'd. // Add it to the attribute list; deal with it later. add_attribute_register(ctx, item->regtype, item->regnum, MOJOSHADER_USAGE_UNKNOWN, 0, 0xF); break; case REG_TYPE_ADDRESS: case REG_TYPE_PREDICATE: case REG_TYPE_TEMP: case REG_TYPE_LOOP: case REG_TYPE_LABEL: ctx->profile->global_emitter(ctx, regtype, regnum); break; case REG_TYPE_CONST: case REG_TYPE_CONSTINT: case REG_TYPE_CONSTBOOL: // separate uniforms into a different list for now. prev->next = next; item->next = NULL; uitem->next = item; uitem = item; item = prev; break; default: fail(ctx, "BUG: we used a register we don't know how to define."); } // switch } // if prev = item; item = next; } // while // okay, now deal with uniforms... for (item = ctx->uniforms.next; item != NULL; item = item->next) { ctx->uniform_count++; ctx->profile->uniform_emitter(ctx, item->regtype, item->regnum); } // for // ...and samplers... for (item = ctx->samplers.next; item != NULL; item = item->next) { ctx->sampler_count++; ctx->profile->sampler_emitter(ctx, item->regnum, (TextureType) item->index); } // for // ...and attributes... for (item = ctx->attributes.next; item != NULL; item = item->next) { ctx->attribute_count++; ctx->profile->attribute_emitter(ctx, item->regtype, item->regnum, item->usage, item->index, item->writemask); } // for } // process_definitions // API entry point... const MOJOSHADER_parseData *MOJOSHADER_parse(const char *profile, const unsigned char *tokenbuf, const unsigned int bufsize, MOJOSHADER_malloc m, MOJOSHADER_free f, void *d) { MOJOSHADER_parseData *retval = NULL; Context *ctx = NULL; int rc = FAIL; if ( ((m == NULL) && (f != NULL)) || ((m != NULL) && (f == NULL)) ) return &out_of_mem_data; // supply both or neither. if ((ctx = build_context(profile, tokenbuf, bufsize, m, f, d)) == NULL) return &out_of_mem_data; // Version token always comes first. rc = parse_version_token(ctx); // parse out the rest of the tokens after the version token... while ( (rc > 0) && (!isfail(ctx)) ) { ctx->tokens += rc; ctx->tokencount -= rc; rc = parse_token(ctx); } // while if (!isfail(ctx)) process_definitions(ctx); if (!isfail(ctx)) ctx->profile->finalize_emitter(ctx); retval = build_parsedata(ctx); destroy_context(ctx); return retval; } // MOJOSHADER_parse void MOJOSHADER_freeParseData(const MOJOSHADER_parseData *_data) { MOJOSHADER_parseData *data = (MOJOSHADER_parseData *) _data; if ((data == NULL) || (data == &out_of_mem_data)) return; // no-op. MOJOSHADER_free f = (data->free == NULL) ? internal_free : data->free; void *d = data->malloc_data; int i; // we don't f(data->profile), because that's internal static data. if (data->output != NULL) // check for NULL in case of dumb free() impl. f((void *) data->output, d); if (data->uniforms != NULL) { for (i = 0; i < data->uniform_count; i++) { if (data->uniforms[i].name != NULL) f((void *) data->uniforms[i].name, d); } // for f((void *) data->uniforms, d); } // if if (data->attributes != NULL) { for (i = 0; i < data->attribute_count; i++) { if (data->attributes[i].name != NULL) f((void *) data->attributes[i].name, d); } // for f((void *) data->attributes, d); } // if if (data->samplers != NULL) { for (i = 0; i < data->sampler_count; i++) { if (data->samplers[i].name != NULL) f((void *) data->samplers[i].name, d); } // for f((void *) data->samplers, d); } // if if ((data->error != NULL) && (data->error != out_of_mem_str)) f((void *) data->error, d); f(data, d); } // MOJOSHADER_freeParseData int MOJOSHADER_version(void) { return MOJOSHADER_VERSION; } // MOJOSHADER_version // end of mojoshader.c ...