mojoshader_parser_hlsl.lemon
author Ryan C. Gordon <icculus@icculus.org>
Tue, 23 Feb 2010 17:38:00 -0500
changeset 857 905ad877371b
parent 855 575a443074af
child 858 d51537335896
permissions -rw-r--r--
Removed the vector/matrix datatype parser tokens. MSDN docs suggest that there aren't formal grammar tokens for these, but rather the compiler treats these as implicit typedefs that appear before the first line of source code. We now treat them as such, which makes everything a little less bulky.

/**
 * MojoShader; generate shader programs from bytecode of compiled
 *  Direct3D shaders.
 *
 * Please see the file LICENSE.txt in the source's root directory.
 *
 *  This file written by Ryan C. Gordon.
 */

// This is a Lemon Parser grammar for HLSL. It is based on an ANSI C YACC
//  grammar by Jeff Lee: http://www.lysator.liu.se/c/ANSI-C-grammar-y.html

// Lemon is here: http://www.hwaci.com/sw/lemon/  ...  the source is included
//  with MojoShader, and built with the library, so you don't have to track
//  down the dependency.

// HLSL syntax is described, informally, here:
//  http://msdn.microsoft.com/en-us/library/bb509615(VS.85).aspx

%name ParseHLSL

// Some shift-reduce conflicts are basically unavoidable, but if the final
//  conflict count matches this value, we consider it known and acceptable.
%expect 2

%start_symbol shader
%token_prefix TOKEN_HLSL_
%token_type { TokenData }
%extra_argument { Context *ctx }

%include {
#ifndef __MOJOSHADER_HLSL_COMPILER__
#error Do not compile this file directly.
#endif
}

%syntax_error {
    // !!! FIXME: make this a proper fail() function.
    fail(ctx, "Syntax error");
}

%parse_failure {
    // !!! FIXME: make this a proper fail() function.
    fail(ctx, "Giving up. Parser is hopelessly lost...");
}

%stack_overflow {
    // !!! FIXME: make this a proper fail() function.
    fail(ctx, "Giving up. Parser stack overflow");
}

// operator precedence (matches C spec)...

%left COMMA.
%right ASSIGN ADDASSIGN SUBASSIGN MULASSIGN DIVASSIGN MODASSIGN LSHIFTASSIGN
       RSHIFTASSIGN ANDASSIGN ORASSIGN XORASSIGN.
%right QUESTION.
%left OROR.
%left ANDAND.
%left OR.
%left XOR.
%left AND.
%left EQL NEQ.
%left LT LEQ GT GEQ.
%left LSHIFT RSHIFT.
%left PLUS MINUS.
%left STAR SLASH PERCENT.
%right TYPECAST EXCLAMATION COMPLEMENT MINUSMINUS PLUSPLUS.
%left DOT LBRACKET RBRACKET LPAREN RPAREN.

// bump up the precedence of ELSE, to avoid shift/reduce conflict on the
//  usual "dangling else ambiguity" ...
%right ELSE.


// The rules...

shader ::= compilation_units(B). { assert(ctx->ast == NULL); REVERSE_LINKED_LIST(CompilationUnit, B); ctx->ast = B; }

%type compilation_units { CompilationUnit * }
%destructor compilation_units { delete_compilation_unit(ctx, $$); }
compilation_units(A) ::= compilation_unit(B). { A = B; }
compilation_units(A) ::= compilation_units(B) compilation_unit(C). { if (C) { C->next = B; A = C; } }

%type compilation_unit { CompilationUnit * }
%destructor compilation_unit { delete_compilation_unit(ctx, $$); }
compilation_unit(A) ::= variable_declaration(B). { A = new_global_variable(ctx, B); }
compilation_unit(A) ::= function_signature(B) SEMICOLON. { A = new_function(ctx, B, NULL); }
compilation_unit(A) ::= function_signature(B) statement_block(C). { A = new_function(ctx, B, C); }
compilation_unit(A) ::= typedef(B). { A = new_global_typedef(ctx, B); }
compilation_unit(A) ::= struct_declaration(B) SEMICOLON. { A = new_global_struct(ctx, B); }
//compilation_unit(A) ::= error SEMICOLON. { A = NULL; }  // !!! FIXME: research using the error nonterminal

%type typedef { Typedef * }
%destructor typedef { delete_typedef(ctx, $$); }
// !!! FIXME: should CONST be here, or in datatype?
typedef(A) ::= TYPEDEF CONST datatype(B) scalar_or_array(C). { A = new_typedef(ctx, 1, B, C); add_usertype(ctx, C->identifier); }
typedef(A) ::= TYPEDEF datatype(B) scalar_or_array(C). { A = new_typedef(ctx, 0, B, C); add_usertype(ctx, C->identifier); }

%type function_signature { FunctionSignature * }
%destructor function_signature { delete_function_signature(ctx, $$); }
function_signature(A) ::= function_storageclass(B) function_details(C) semantic(D). { A = C; A->storage_class = B; A->semantic = D; }
function_signature(A) ::= function_storageclass(B) function_details(C). { A = C; A->storage_class = B; }
function_signature(A) ::= function_details(B) semantic(C). { A = B; A->semantic = C; }
function_signature(A) ::= function_details(B). { A = B; }

%type function_details { FunctionSignature * }
%destructor function_details { delete_function_signature(ctx, $$); }
function_details(A) ::= datatype(B) IDENTIFIER(C) LPAREN function_arguments(D) RPAREN. { A = new_function_signature(ctx, B, C.string, D); }
function_details(A) ::= VOID IDENTIFIER(B) LPAREN function_arguments(C) RPAREN. { A = new_function_signature(ctx, NULL, B.string, C); }

// !!! FIXME: there is a "target" storage class that is the name of the
// !!! FIXME:  platform that this function is meant for...but I don't know
// !!! FIXME:  what tokens are valid here.

// !!! FIXME: Also, the docs say "one of" inline or target, but I bet you can
// !!! FIXME:  specify both.
%type function_storageclass { FunctionStorageClass }
//function_storageclass(A) ::= target(B). { A = B; }
function_storageclass(A) ::= INLINE. { A = FNSTORECLS_INLINE; }

%type function_arguments { FunctionArguments * }
%destructor function_arguments { delete_function_args(ctx, $$); }
function_arguments(A) ::= VOID. { A = NULL; }
function_arguments(A) ::= function_argument_list(B). { REVERSE_LINKED_LIST(FunctionArguments, B); A = B; }
function_arguments(A) ::= . { A = NULL; }

%type function_argument_list { FunctionArguments * }
%destructor function_argument_list { delete_function_args(ctx, $$); }
function_argument_list(A) ::= function_argument(B). { A = B; }
function_argument_list(A) ::= function_argument_list(B) COMMA function_argument(C). { C->next = B; A = C; }

// !!! FIXME: this is pretty unreadable.
%type function_argument { FunctionArguments * }
%destructor function_argument { delete_function_args(ctx, $$); }
function_argument(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) semantic(E) interpolation_mod(F) initializer(G). { A = new_function_arg(ctx, B, C, D.string, E, F, G); }
function_argument(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) semantic(E) interpolation_mod(F). { A = new_function_arg(ctx, B, C, D.string, E, F, NULL); }
function_argument(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) semantic(E) initializer(F). { A = new_function_arg(ctx, B, C, D.string, E, INTERPMOD_NONE, F); }
function_argument(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) semantic(E). { A = new_function_arg(ctx, B, C, D.string, E, INTERPMOD_NONE, NULL); }
function_argument(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) interpolation_mod(E) initializer(F). { A = new_function_arg(ctx, B, C, D.string, NULL, E, F); }
function_argument(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) interpolation_mod(E). { A = new_function_arg(ctx, B, C, D.string, NULL, E, NULL); }
function_argument(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D) initializer(E). { A = new_function_arg(ctx, B, C, D.string, NULL, INTERPMOD_NONE, E); }
function_argument(A) ::= input_modifier(B) datatype(C) IDENTIFIER(D). { A = new_function_arg(ctx, B, C, D.string, NULL, INTERPMOD_NONE, NULL); }
function_argument(A) ::= datatype(B) IDENTIFIER(C) semantic(D) interpolation_mod(E) initializer(F). { A = new_function_arg(ctx, INPUTMOD_NONE, B, C.string, D, E, F); }
function_argument(A) ::= datatype(B) IDENTIFIER(C) semantic(D) interpolation_mod(E). { A = new_function_arg(ctx, INPUTMOD_NONE, B, C.string, D, E, NULL); }
function_argument(A) ::= datatype(B) IDENTIFIER(C) semantic(D) initializer(E). { A = new_function_arg(ctx, INPUTMOD_NONE, B, C.string, D, INTERPMOD_NONE, E); }
function_argument(A) ::= datatype(B) IDENTIFIER(C) semantic(D). { A = new_function_arg(ctx, INPUTMOD_NONE, B, C.string, D, INTERPMOD_NONE, NULL); }
function_argument(A) ::= datatype(B) IDENTIFIER(C) interpolation_mod(D) initializer(E). { A = new_function_arg(ctx, INPUTMOD_NONE, B, C.string, NULL, D, E); }
function_argument(A) ::= datatype(B) IDENTIFIER(C) interpolation_mod(D). { A = new_function_arg(ctx, INPUTMOD_NONE, B, C.string, NULL, D, NULL); }
function_argument(A) ::= datatype(B) IDENTIFIER(C) initializer(D). { A = new_function_arg(ctx, INPUTMOD_NONE, B, C.string, NULL, INTERPMOD_NONE, D); }
function_argument(A) ::= datatype(B) IDENTIFIER(C). { A = new_function_arg(ctx, INPUTMOD_NONE, B, C.string, NULL, INTERPMOD_NONE, NULL); }

%type input_modifier { InputModifier }
input_modifier(A) ::= IN. { A = INPUTMOD_IN; }
input_modifier(A) ::= INOUT. { A = INPUTMOD_INOUT; }
input_modifier(A) ::= OUT. { A = INPUTMOD_OUT; }
input_modifier(A) ::= IN OUT. { A = INPUTMOD_INOUT; }
input_modifier(A) ::= OUT IN. { A = INPUTMOD_INOUT; }
input_modifier(A) ::= UNIFORM. { A = INPUTMOD_UNIFORM; }

%type semantic { const char * }
semantic(A) ::= COLON IDENTIFIER(B). { A = B.string; }

// DX10 only?
%type interpolation_mod { InterpolationModifier }
interpolation_mod(A) ::= LINEAR. { A = INTERPMOD_LINEAR; }
interpolation_mod(A) ::= CENTROID. { A = INTERPMOD_CENTROID; }
interpolation_mod(A) ::= NOINTERPOLATION. { A = INTERPMOD_NOINTERPOLATION; }
interpolation_mod(A) ::= NOPERSPECTIVE. { A = INTERPMOD_NOPERSPECTIVE; }
interpolation_mod(A) ::= SAMPLE. { A = INTERPMOD_SAMPLE; }

%type variable_declaration { VariableDeclaration * }
%destructor variable_declaration { delete_variable_declaration(ctx, $$); }
variable_declaration(A) ::= variable_attribute_list(B) datatype(C) variable_declaration_details_list(D) SEMICOLON. { REVERSE_LINKED_LIST(VariableDeclaration, D); A = D; A->attributes = B; A->datatype = C; }
variable_declaration(A) ::= datatype(B) variable_declaration_details_list(C) SEMICOLON. { REVERSE_LINKED_LIST(VariableDeclaration, C); A = C; A->datatype = B; }
variable_declaration(A) ::= struct_declaration(B) variable_declaration_details_list(C) SEMICOLON. { REVERSE_LINKED_LIST(VariableDeclaration, C); A = C; A->anonymous_datatype = B; }

%type variable_attribute_list { int }
variable_attribute_list(A) ::= variable_attribute(B). { A = B; }
variable_attribute_list(A) ::= variable_attribute_list(B) variable_attribute(C). { A = B | C; }

%type variable_attribute { int }
variable_attribute(A) ::= EXTERN. { A = VARATTR_EXTERN; }
variable_attribute(A) ::= NOINTERPOLATION. { A = VARATTR_NOINTERPOLATION; }
variable_attribute(A) ::= SHARED. { A = VARATTR_SHARED; }
variable_attribute(A) ::= STATIC. { A = VARATTR_STATIC; }
variable_attribute(A) ::= UNIFORM. { A = VARATTR_UNIFORM; }
variable_attribute(A) ::= VOLATILE. { A = VARATTR_VOLATILE; }
variable_attribute(A) ::= CONST. { A = VARATTR_CONST; }
variable_attribute(A) ::= ROWMAJOR. { A = VARATTR_ROWMAJOR; }
variable_attribute(A) ::= COLUMNMAJOR. { A = VARATTR_COLUMNMAJOR; }

%type variable_declaration_details_list { VariableDeclaration * }
%destructor variable_declaration_details_list { delete_variable_declaration(ctx, $$); }
variable_declaration_details_list(A) ::= variable_declaration_details(B). { A = B; }
variable_declaration_details_list(A) ::= variable_declaration_details_list(B) COMMA variable_declaration_details(C). { A = C; A->next = B; }

%type variable_declaration_details { VariableDeclaration * }
%destructor variable_declaration_details { delete_variable_declaration(ctx, $$); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) annotations(D) initializer(E) variable_lowlevel(F). { A = new_variable_declaration(ctx, B, C, D, E, F); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) annotations(D) initializer(E). { A = new_variable_declaration(ctx, B, C, D, E, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) annotations(D) variable_lowlevel(E). { A = new_variable_declaration(ctx, B, C, D, NULL, E); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) annotations(D). { A = new_variable_declaration(ctx, B, C, D, NULL, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) initializer(D) variable_lowlevel(E). { A = new_variable_declaration(ctx, B, C, NULL, D, E); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) initializer(D). { A = new_variable_declaration(ctx, B, C, NULL, D, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C) variable_lowlevel(D). { A = new_variable_declaration(ctx, B, C, NULL, NULL, D); }
variable_declaration_details(A) ::= scalar_or_array(B) semantic(C). { A = new_variable_declaration(ctx, B, C, NULL, NULL, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) annotations(C) initializer(D) variable_lowlevel(E). { A = new_variable_declaration(ctx, B, NULL, C, D, E); }
variable_declaration_details(A) ::= scalar_or_array(B) annotations(C) initializer(D). { A = new_variable_declaration(ctx, B, NULL, C, D, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) annotations(C) variable_lowlevel(D). { A = new_variable_declaration(ctx, B, NULL, C, NULL, D); }
variable_declaration_details(A) ::= scalar_or_array(B) annotations(C). { A = new_variable_declaration(ctx, B, NULL, C, NULL, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) initializer(C) variable_lowlevel(D). { A = new_variable_declaration(ctx, B, NULL, NULL, C, D); }
variable_declaration_details(A) ::= scalar_or_array(B) initializer(C). { A = new_variable_declaration(ctx, B, NULL, NULL, C, NULL); }
variable_declaration_details(A) ::= scalar_or_array(B) variable_lowlevel(C). { A = new_variable_declaration(ctx, B, NULL, NULL, NULL, C); }
variable_declaration_details(A) ::= scalar_or_array(B). { A = new_variable_declaration(ctx, B, NULL, NULL, NULL, NULL); }

// !!! FIXME: we don't handle full sampler declarations at the moment.


%type struct_declaration { StructDeclaration * }
%destructor struct_declaration { delete_struct_declaration(ctx, $$); }
struct_declaration(A) ::= struct_intro(B) LBRACE struct_member_list(C) RBRACE. { REVERSE_LINKED_LIST(StructMembers, C); A = new_struct_declaration(ctx, B, C); }

// This has to be separate from struct_declaration so that the struct is in the usertypemap when parsing its members.
%type struct_intro { const char * }
struct_intro(A) ::= STRUCT IDENTIFIER(B). { A = B.string; add_usertype(ctx, A); }

%type struct_member_list { StructMembers * }
%destructor struct_member_list { delete_struct_member(ctx, $$); }
struct_member_list(A) ::= struct_member(B). { A = B; }
struct_member_list(A) ::= struct_member_list(B) struct_member(C). { A = C; A->next = B; }

%type struct_member { StructMembers * }
%destructor struct_member { delete_struct_member(ctx, $$); }
struct_member(A) ::= interpolation_mod(B) struct_member_details(C). { StructMembers *i = C; A = C; while (i) { i->interpolation_mod = B; i = i->next; } }
struct_member(A) ::= struct_member_details(B). { A = B; }

%type struct_member_details { StructMembers * }
%destructor struct_member_details { delete_struct_member(ctx, $$); }
struct_member_details(A) ::= datatype(B) struct_member_item_list(C) SEMICOLON. { StructMembers *i = C; A = C; while (i) { i->datatype = B; i = i->next; } }

%type struct_member_item_list { StructMembers * }
%destructor struct_member_item_list { delete_struct_member(ctx, $$); }
struct_member_item_list(A) ::= scalar_or_array(B). { A = new_struct_member(ctx, B, NULL); }
struct_member_item_list(A) ::= scalar_or_array(B) semantic(C). { A = new_struct_member(ctx, B, C); }
struct_member_item_list(A) ::= struct_member_item_list(B) COMMA IDENTIFIER(C). { A = new_struct_member(ctx, new_scalar_or_array(ctx, C.string, 0, NULL), NULL); A->next = B; A->semantic = B->semantic; }

%type variable_lowlevel { VariableLowLevel * }
%destructor variable_lowlevel { delete_variable_lowlevel(ctx, $$); }
variable_lowlevel(A) ::= packoffset(B) register(C). { A = new_variable_lowlevel(ctx, B, C); }
variable_lowlevel(A) ::= register(B) packoffset(C). { A = new_variable_lowlevel(ctx, C, B); }
variable_lowlevel(A) ::= packoffset(B). { A = new_variable_lowlevel(ctx, B, NULL); }
variable_lowlevel(A) ::= register(B). { A = new_variable_lowlevel(ctx, NULL, B); }

// !!! FIXME: I sort of hate this type name.
%type scalar_or_array { ScalarOrArray * }
%destructor scalar_or_array { delete_scalar_or_array(ctx, $$); }
scalar_or_array(A) ::= IDENTIFIER(B) LBRACKET RBRACKET. { A = new_scalar_or_array(ctx, B.string, 1, NULL); }
scalar_or_array(A) ::= IDENTIFIER(B) LBRACKET expression(C) RBRACKET. { A = new_scalar_or_array(ctx, B.string, 1, C); }
scalar_or_array(A) ::= IDENTIFIER(B). { A = new_scalar_or_array(ctx, B.string, 0, NULL); }

%type packoffset { PackOffset * }
%destructor packoffset { delete_pack_offset(ctx, $$); }
packoffset(A) ::= COLON PACKOFFSET LPAREN IDENTIFIER(B) DOT IDENTIFIER(C) RPAREN. { A = new_pack_offset(ctx, B.string, C.string); }
packoffset(A) ::= COLON PACKOFFSET LPAREN IDENTIFIER(B) RPAREN. { A = new_pack_offset(ctx, B.string, NULL); }

// !!! FIXME: can take a profile, like ": register(ps_5_0, s)"
// !!! FIXME: IDENTIFIER is wrong: "s[2]" works, apparently. Use scalar_or_array instead?
// !!! FIXME: (these might be SM4 features)
%type register { const char * }
register(A) ::= COLON REGISTER LPAREN IDENTIFIER(B) RPAREN. { A = B.string; }

%type annotations { Annotations * }
%destructor annotations { delete_annotation(ctx, $$); }
annotations(A) ::= LT annotation_list(B) GT. { REVERSE_LINKED_LIST(Annotations, B); A = B; }

%type annotation_list { Annotations * }
%destructor annotation_list { delete_annotation(ctx, $$); }
annotation_list(A) ::= annotation(B). { A = B; }
annotation_list(A) ::= annotation_list(B) annotation(C). { A = C; A->next = B; }

// !!! FIXME: can this take a USERTYPE if we typedef'd a scalar type?
%type annotation { Annotations * }
%destructor annotation { delete_annotation(ctx, $$); }
annotation(A) ::= datatype_scalar(B) initializer(C) SEMICOLON. { A = new_annotation(ctx, B, C); }

%type initializer_block_list { Expression * }
%destructor initializer_block_list { delete_expr(ctx, $$); }
initializer_block_list(A) ::= expression(B). { A = B; }
initializer_block_list(A) ::= LBRACE initializer_block_list(B) RBRACE. { A = B; }
initializer_block_list(A) ::= initializer_block_list(B) COMMA initializer_block_list(C). { A = new_binary_expr(ctx, AST_OP_COMMA, B, C); }

%type initializer_block { Expression * }
%destructor initializer_block { delete_expr(ctx, $$); }
initializer_block(A) ::= LBRACE initializer_block_list(B) RBRACE. { A = B; }

%type initializer { Expression * }
%destructor initializer { delete_expr(ctx, $$); }
initializer(A) ::= ASSIGN initializer_block(B). { A = B; }
initializer(A) ::= ASSIGN expression(B). { A = B; }

%type intrinsic_datatype { const char * }
intrinsic_datatype(A) ::= datatype_vector(B). { A = B; }
intrinsic_datatype(A) ::= datatype_matrix(B). { A = B; }
intrinsic_datatype(A) ::= datatype_scalar(B). { A = B; }
intrinsic_datatype(A) ::= datatype_sampler(B). { A = B; }

%type datatype { const char * }
datatype(A) ::= intrinsic_datatype(B). { A = B; }
datatype(A) ::= USERTYPE(B). { A = B.string; }

%type datatype_sampler { const char * }
datatype_sampler(A) ::= SAMPLER. { A = cache_string_fmt(ctx, "s1"); }
datatype_sampler(A) ::= SAMPLER1D. { A = cache_string_fmt(ctx, "s1"); }
datatype_sampler(A) ::= SAMPLER2D. { A = cache_string_fmt(ctx, "s2"); }
datatype_sampler(A) ::= SAMPLER3D. { A = cache_string_fmt(ctx, "s3"); }
datatype_sampler(A) ::= SAMPLERCUBE. { A = cache_string_fmt(ctx, "sc"); }
datatype_sampler(A) ::= SAMPLER_STATE. { A = cache_string_fmt(ctx, "ss"); }
datatype_sampler(A) ::= SAMPLERSTATE. { A = cache_string_fmt(ctx, "ss"); }
datatype_sampler(A) ::= SAMPLERCOMPARISONSTATE. { A = cache_string_fmt(ctx, "sS"); }

%type datatype_scalar { const char * }
datatype_scalar(A) ::= BOOL. { A = cache_string_fmt(ctx, "b"); }
datatype_scalar(A) ::= INT. { A = cache_string_fmt(ctx, "i"); }
datatype_scalar(A) ::= UINT. { A = cache_string_fmt(ctx, "u"); }
datatype_scalar(A) ::= HALF. { A = cache_string_fmt(ctx, "h"); }
datatype_scalar(A) ::= FLOAT. { A = cache_string_fmt(ctx, "f"); }
datatype_scalar(A) ::= DOUBLE. { A = cache_string_fmt(ctx, "d"); }
datatype_scalar(A) ::= STRING. { A = cache_string_fmt(ctx, "S"); } // this is for the effects framework, not HLSL.
datatype_scalar(A) ::= SNORM FLOAT. { A = cache_string_fmt(ctx, "Fs"); }
datatype_scalar(A) ::= UNORM FLOAT. { A = cache_string_fmt(ctx, "Fu"); }
datatype_scalar(A) ::= BUFFER LT datatype_scalar(B) GT. { A = cache_string_fmt(ctx, "B%s", B); }

// !!! FIXME: MSDN suggests that the matrix ones are just typedefs inserted
// !!! FIXME:  before parsing begins, like:
// !!! FIXME: typedef matrix <bool,4,3> bool4x3;
// !!! FIXME:  ...maybe we can rip these out of the grammar and just create
// !!! FIXME:  them at startup?
%type datatype_vector { const char * }
datatype_vector(A) ::= VECTOR LT datatype_scalar(B) COMMA INT_CONSTANT(C) GT. { A = cache_string_fmt(ctx, "v%d%s", (int) C.i64, B); }

%type datatype_matrix { const char * }
datatype_matrix(A) ::= MATRIX LT datatype_scalar(B) COMMA INT_CONSTANT(C) COMMA INT_CONSTANT(D) GT. { A = cache_string_fmt(ctx, "m%d%d%s", (int) C.i64, (int) D.i64, B); }

%type statement_block { Statement * }
%destructor statement_block { delete_statement(ctx, $$); }
statement_block(A) ::= LBRACE RBRACE. { A = new_empty_statement(ctx); }
statement_block(A) ::= LBRACE statement_list(B) RBRACE. { REVERSE_LINKED_LIST(Statement, B); A = B; }

%type statement_list { Statement * }
%destructor statement_list { delete_statement(ctx, $$); }
statement_list(A) ::= statement(B). { A = B; }
statement_list(A) ::= statement_list(B) statement(C). { A = C; A->next = B; }

// These are for Shader Model 4 and Xbox 360 only, apparently.
// !!! FIXME: ...so we ignore them for now.
// !!! FIXME: can these stack?  "[isolate][unused]{}" or something?
%type statement_attribute { int }
statement_attribute(A) ::= ISOLATE. { A = 0; }  // !!! FIXME
statement_attribute(A) ::= MAXINSTRUCTIONCOUNT LPAREN INT_CONSTANT RPAREN. { A = 0; }  // !!! FIXME
statement_attribute(A) ::= NOEXPRESSIONOPTIMIZATIONS. { A = 0; }  // !!! FIXME
statement_attribute(A) ::= REMOVEUNUSEDINPUTS. { A = 0; }  // !!! FIXME
statement_attribute(A) ::= UNUSED. { A = 0; }  // !!! FIXME
statement_attribute(A) ::= XPS. { A = 0; }  // !!! FIXME

%type statement { Statement * }
%destructor statement { delete_statement(ctx, $$); }
statement(A) ::= BREAK SEMICOLON. { A = new_break_statement(ctx); }
statement(A) ::= CONTINUE SEMICOLON. { A = new_continue_statement(ctx); }
statement(A) ::= DISCARD SEMICOLON. { A = new_discard_statement(ctx); }
statement(A) ::= LBRACKET statement_attribute(B) RBRACKET statement_block(C). { A = C; /* !!! FIXME: A->attributes = B;*/ B = 0; }
statement(A) ::= variable_declaration(B). { A = new_vardecl_statement(ctx, B); }
statement(A) ::= struct_declaration(B) SEMICOLON. { A = new_struct_statement(ctx, B); }
statement(A) ::= do_intro(B) DO statement(C) WHILE LPAREN expression(D) RPAREN SEMICOLON. { A = new_do_statement(ctx, B, C, D); }
statement(A) ::= while_intro(B) LPAREN expression(C) RPAREN statement(D). { A = new_while_statement(ctx, B, C, D); }
statement(A) ::= if_intro(B) LPAREN expression(C) RPAREN statement(D). { A = new_if_statement(ctx, B, C, D, NULL); }
statement(A) ::= if_intro(B) LPAREN expression(C) RPAREN statement(D) ELSE statement(E). { A = new_if_statement(ctx, B, C, D, E); }
statement(A) ::= switch_intro(B) LPAREN expression(C) RPAREN LBRACE switch_case_list(D) RBRACE. { REVERSE_LINKED_LIST(SwitchCases, D); A = new_switch_statement(ctx, B, C, D); }
statement(A) ::= typedef(B). { A = new_typedef_statement(ctx, B); }
statement(A) ::= SEMICOLON. { A = new_empty_statement(ctx); }
statement(A) ::= expression(B) SEMICOLON. { A = new_expr_statement(ctx, B); }
statement(A) ::= RETURN SEMICOLON. { A = new_return_statement(ctx, NULL); }
statement(A) ::= RETURN expression(B) SEMICOLON. { A = new_return_statement(ctx, B); }
statement(A) ::= statement_block(B). { A = B; }
statement(A) ::= for_statement(B). { A = B; }
//statement(A) ::= error SEMICOLON. { A = NULL; }  // !!! FIXME: research using the error nonterminal

%type while_intro { int64 }
while_intro(A) ::= LBRACKET UNROLL LPAREN INT_CONSTANT(B) RPAREN RBRACKET WHILE. { A = (B.i64 < 0) ? 0 : B.i64; }
while_intro(A) ::= LBRACKET UNROLL RBRACKET WHILE. { A = -1; }
while_intro(A) ::= LBRACKET LOOP RBRACKET WHILE. { A = 0; }
while_intro(A) ::= WHILE. { A = -2; }

%type for_statement { Statement * }
%destructor for_statement { delete_statement(ctx, $$); }
for_statement(A) ::= for_intro(B) for_details(C). { A = C; ((ForStatement *) A)->unroll = B; }

%type for_intro { int64 }
for_intro(A) ::= LBRACKET UNROLL LPAREN INT_CONSTANT(B) RPAREN RBRACKET FOR. { A = (B.i64 < 0) ? 0 : B.i64; }
for_intro(A) ::= LBRACKET UNROLL RBRACKET FOR. { A = -1; }
for_intro(A) ::= LBRACKET LOOP RBRACKET FOR. { A = 0; }
for_intro(A) ::= FOR. { A = -2; }

%type for_details { Statement * }
%destructor for_details { delete_statement(ctx, $$); }
for_details(A) ::= LPAREN expression(B) SEMICOLON expression(C) SEMICOLON expression(D) RPAREN statement(E). { A = new_for_statement(ctx, NULL, B, C, D, E); }
for_details(A) ::= LPAREN SEMICOLON SEMICOLON RPAREN statement(B). { A = new_for_statement(ctx, NULL, NULL, NULL, NULL, B); }
for_details(A) ::= LPAREN SEMICOLON SEMICOLON expression(B) RPAREN statement(C). { A = new_for_statement(ctx, NULL, NULL, NULL, B, C); }
for_details(A) ::= LPAREN SEMICOLON expression(B) SEMICOLON RPAREN statement(C). { A = new_for_statement(ctx, NULL, NULL, B, NULL, C); }
for_details(A) ::= LPAREN SEMICOLON expression(B) SEMICOLON expression(C) RPAREN statement(D). { A = new_for_statement(ctx, NULL, NULL, B, C, D); }
for_details(A) ::= LPAREN expression(B) SEMICOLON SEMICOLON RPAREN statement(C). { A = new_for_statement(ctx, NULL, B, NULL, NULL, C); }
for_details(A) ::= LPAREN expression(B) SEMICOLON SEMICOLON expression(C) RPAREN statement(D). { A = new_for_statement(ctx, NULL, B, NULL, C, D); }
for_details(A) ::= LPAREN expression(B) SEMICOLON expression(C) SEMICOLON RPAREN statement(D). { A = new_for_statement(ctx, NULL, B, C, NULL, D); }
for_details(A) ::= LPAREN variable_declaration(B) expression(C) SEMICOLON expression(D) RPAREN statement(E). { A = new_for_statement(ctx, B, NULL, C, D, E); }
for_details(A) ::= LPAREN variable_declaration(B) SEMICOLON RPAREN statement(C).  { A = new_for_statement(ctx, B, NULL, NULL, NULL, C); }
for_details(A) ::= LPAREN variable_declaration(B) SEMICOLON expression(C) RPAREN statement(D). { A = new_for_statement(ctx, B, NULL, C, NULL, D); }
for_details(A) ::= LPAREN variable_declaration(B) expression(C) SEMICOLON RPAREN statement(D). { A = new_for_statement(ctx, B, NULL, C, NULL, D); }

%type do_intro { int64 }
do_intro(A) ::= LBRACKET UNROLL LPAREN INT_CONSTANT(B) RPAREN RBRACKET DO. { A = (B.i64 < 0) ? 0 : (int) B.i64; }
do_intro(A) ::= LBRACKET UNROLL RBRACKET DO. { A = -1; }
do_intro(A) ::= LBRACKET LOOP RBRACKET DO. { A = 0; }
do_intro(A) ::= DO. { A = -2; }

%type if_intro { int }
if_intro(A) ::= LBRACKET BRANCH RBRACKET IF. { A = IFATTR_BRANCH; }
if_intro(A) ::= LBRACKET FLATTEN RBRACKET IF. { A = IFATTR_FLATTEN; }
if_intro(A) ::= LBRACKET IFALL RBRACKET IF. { A = IFATTR_IFALL; }
if_intro(A) ::= LBRACKET IFANY RBRACKET IF. { A = IFATTR_IFANY; }
if_intro(A) ::= LBRACKET PREDICATE RBRACKET IF. { A = IFATTR_PREDICATE; }
if_intro(A) ::= LBRACKET PREDICATEBLOCK RBRACKET IF. { A = IFATTR_PREDICATEBLOCK; }
if_intro(A) ::= IF. { A = IFATTR_NONE; }

%type switch_intro { int }
switch_intro(A) ::= LBRACKET FLATTEN RBRACKET SWITCH. { A = SWITCHATTR_FLATTEN; }
switch_intro(A) ::= LBRACKET BRANCH RBRACKET SWITCH. { A = SWITCHATTR_BRANCH; }
switch_intro(A) ::= LBRACKET FORCECASE RBRACKET SWITCH. { A = SWITCHATTR_FORCECASE; }
switch_intro(A) ::= LBRACKET CALL RBRACKET SWITCH. { A = SWITCHATTR_CALL; }
switch_intro(A) ::= SWITCH. { A = SWITCHATTR_NONE; }

%type switch_case_list { SwitchCases * }
%destructor switch_case_list { delete_switch_case(ctx, $$); }
switch_case_list(A) ::= switch_case(B). { A = B; }
switch_case_list(A) ::= switch_case_list(B) switch_case(C). { A = C; A->next = B; }

// You can do math here, apparently, as long as it produces an int constant.
//  ...so "case 3+2:" works.
%type switch_case { SwitchCases * }
%destructor switch_case { delete_switch_case(ctx, $$); }
switch_case(A) ::= CASE expression(B) COLON statement_list(C). { REVERSE_LINKED_LIST(Statement, C); A = new_switch_case(ctx, B, C); }
switch_case(A) ::= CASE expression(B) COLON. { A = new_switch_case(ctx, B, NULL); }
switch_case(A) ::= DEFAULT COLON statement_list(B). { REVERSE_LINKED_LIST(Statement, B); A = new_switch_case(ctx, NULL, B); }
switch_case(A) ::= DEFAULT COLON. { A = new_switch_case(ctx, NULL, NULL); }

// the expression stuff is based on Jeff Lee's ANSI C grammar.
%type primary_expr { Expression * }
%destructor primary_expr { delete_expr(ctx, $$); }
primary_expr(A) ::= IDENTIFIER(B). { A = new_identifier_expr(ctx, B.string); }
primary_expr(A) ::= INT_CONSTANT(B). { A = new_literal_int_expr(ctx, B.i64); }
primary_expr(A) ::= FLOAT_CONSTANT(B). { A = new_literal_float_expr(ctx, B.dbl); }
primary_expr(A) ::= STRING_LITERAL(B). { A = new_literal_string_expr(ctx, B.string); }
primary_expr(A) ::= LPAREN expression(B) RPAREN. { A = B; }

%type postfix_expr { Expression * }
%destructor postfix_expr { delete_expr(ctx, $$); }
postfix_expr(A) ::= primary_expr(B). { A = B; }
postfix_expr(A) ::= postfix_expr(B) LBRACKET expression(C) RBRACKET. { A = new_binary_expr(ctx, AST_OP_DEREF_ARRAY, B, C); }
postfix_expr(A) ::= postfix_expr(B) LPAREN RPAREN. { A = new_binary_expr(ctx, AST_OP_CALLFUNC, B, NULL); }
postfix_expr(A) ::= postfix_expr(B) LPAREN argument_expr_list(C) RPAREN. { A = new_binary_expr(ctx, AST_OP_CALLFUNC, B, C); }
postfix_expr(A) ::= datatype(B) LPAREN argument_expr_list(C) RPAREN. { A = NULL; new_constructor_expr(ctx, B, C); } // HLSL constructor
postfix_expr(A) ::= postfix_expr(B) DOT IDENTIFIER(C). { A = new_binary_expr(ctx, AST_OP_DEREF_STRUCT, B, new_identifier_expr(ctx, C.string)); }
postfix_expr(A) ::= postfix_expr(B) PLUSPLUS. { A = new_unary_expr(ctx, AST_OP_POSTINCREMENT, B); }
postfix_expr(A) ::= postfix_expr(B) MINUSMINUS. { A = new_unary_expr(ctx, AST_OP_POSTDECREMENT, B); }

%type argument_expr_list { Expression * }
%destructor argument_expr_list { delete_expr(ctx, $$); }
argument_expr_list(A) ::= assignment_expr(B). { A = B; }
argument_expr_list(A) ::= argument_expr_list(B) COMMA assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_COMMA, B, C); }

%type unary_expr { Expression * }
%destructor unary_expr { delete_expr(ctx, $$); }
unary_expr(A) ::= postfix_expr(B). { A = B; }
unary_expr(A) ::= PLUSPLUS unary_expr(B). { A = new_unary_expr(ctx, AST_OP_PREINCREMENT, B); }
unary_expr(A) ::= MINUSMINUS unary_expr(B). { A = new_unary_expr(ctx, AST_OP_PREDECREMENT, B); }
unary_expr(A) ::= PLUS cast_expr(B). { A = B; }  // unary "+x" is always a no-op, so throw it away here.
unary_expr(A) ::= MINUS cast_expr(B). { A = new_unary_expr(ctx, AST_OP_NEGATE, B); }
unary_expr(A) ::= COMPLEMENT cast_expr(B). { A = new_unary_expr(ctx, AST_OP_COMPLEMENT, B); }
unary_expr(A) ::= EXCLAMATION cast_expr(B). { A = new_unary_expr(ctx, AST_OP_NOT, B); }

%type cast_expr { Expression * }
%destructor cast_expr { delete_expr(ctx, $$); }
cast_expr(A) ::= unary_expr(B). { A = B; }
cast_expr(A) ::= LPAREN datatype(B) RPAREN cast_expr(C). { A = new_cast_expr(ctx, B, C); }

%type multiplicative_expr { Expression * }
%destructor multiplicative_expr { delete_expr(ctx, $$); }
multiplicative_expr(A) ::= cast_expr(B). { A = B; }
multiplicative_expr(A) ::= multiplicative_expr(B) STAR cast_expr(C). { A = new_binary_expr(ctx, AST_OP_MULTIPLY, B, C); }
multiplicative_expr(A) ::= multiplicative_expr(B) SLASH cast_expr(C). { A = new_binary_expr(ctx, AST_OP_DIVIDE, B, C); }
multiplicative_expr(A) ::= multiplicative_expr(B) PERCENT cast_expr(C). { A = new_binary_expr(ctx, AST_OP_MODULO, B, C); }

%type additive_expr { Expression * }
%destructor additive_expr { delete_expr(ctx, $$); }
additive_expr(A) ::= multiplicative_expr(B). { A = B; }
additive_expr(A) ::= additive_expr(B) PLUS multiplicative_expr(C). { A = new_binary_expr(ctx, AST_OP_ADD, B, C); }
additive_expr(A) ::= additive_expr(B) MINUS multiplicative_expr(C). { A = new_binary_expr(ctx, AST_OP_SUBTRACT, B, C); }

%type shift_expr { Expression * }
%destructor shift_expr { delete_expr(ctx, $$); }
shift_expr(A) ::= additive_expr(B). { A = B; }
shift_expr(A) ::= shift_expr(B) LSHIFT additive_expr(C). { A = new_binary_expr(ctx, AST_OP_LSHIFT, B, C); }
shift_expr(A) ::= shift_expr(B) RSHIFT additive_expr(C). { A = new_binary_expr(ctx, AST_OP_RSHIFT, B, C); }

%type relational_expr { Expression * }
%destructor relational_expr { delete_expr(ctx, $$); }
relational_expr(A) ::= shift_expr(B). { A = B; }
relational_expr(A) ::= relational_expr(B) LT shift_expr(C). { A = new_binary_expr(ctx, AST_OP_LESSTHAN, B, C); }
relational_expr(A) ::= relational_expr(B) GT shift_expr(C). { A = new_binary_expr(ctx, AST_OP_GREATERTHAN, B, C); }
relational_expr(A) ::= relational_expr(B) LEQ shift_expr(C). { A = new_binary_expr(ctx, AST_OP_LESSTHANOREQUAL, B, C); }
relational_expr(A) ::= relational_expr(B) GEQ shift_expr(C). { A = new_binary_expr(ctx, AST_OP_GREATERTHANOREQUAL, B, C); }

%type equality_expr { Expression * }
%destructor equality_expr { delete_expr(ctx, $$); }
equality_expr(A) ::= relational_expr(B). { A = B; }
equality_expr(A) ::= equality_expr(B) EQL relational_expr(C). { A = new_binary_expr(ctx, AST_OP_EQUAL, B, C); }
equality_expr(A) ::= equality_expr(B) NEQ relational_expr(C). { A = new_binary_expr(ctx, AST_OP_NOTEQUAL, B, C); }

%type and_expr { Expression * }
%destructor and_expr { delete_expr(ctx, $$); }
and_expr(A) ::= equality_expr(B). { A = B; }
and_expr(A) ::= and_expr(B) AND equality_expr(C). { A = new_binary_expr(ctx, AST_OP_BINARYAND, B, C); }

%type exclusive_or_expr { Expression * }
%destructor exclusive_or_expr { delete_expr(ctx, $$); }
exclusive_or_expr(A) ::= and_expr(B). { A = B; }
exclusive_or_expr(A) ::= exclusive_or_expr(B) XOR and_expr(C). { A = new_binary_expr(ctx, AST_OP_BINARYXOR, B, C); }

%type inclusive_or_expr { Expression * }
%destructor inclusive_or_expr { delete_expr(ctx, $$); }
inclusive_or_expr(A) ::= exclusive_or_expr(B). { A = B; }
inclusive_or_expr(A) ::= inclusive_or_expr(B) OR exclusive_or_expr(C). { A = new_binary_expr(ctx, AST_OP_BINARYOR, B, C); }

%type logical_and_expr { Expression * }
%destructor logical_and_expr { delete_expr(ctx, $$); }
logical_and_expr(A) ::= inclusive_or_expr(B). { A = B; }
logical_and_expr(A) ::= logical_and_expr(B) ANDAND inclusive_or_expr(C). { A = new_binary_expr(ctx, AST_OP_LOGICALAND, B, C); }

%type logical_or_expr { Expression * }
%destructor logical_or_expr { delete_expr(ctx, $$); }
logical_or_expr(A) ::= logical_and_expr(B). { A = B; }
logical_or_expr(A) ::= logical_or_expr(B) OROR logical_and_expr(C). { A = new_binary_expr(ctx, AST_OP_LOGICALOR, B, C); }

%type conditional_expr { Expression * }
%destructor conditional_expr { delete_expr(ctx, $$); }
conditional_expr(A) ::= logical_or_expr(B). { A = B; }
conditional_expr(A) ::= logical_or_expr(B) QUESTION logical_or_expr(C) COLON conditional_expr(D). { A = new_ternary_expr(ctx, AST_OP_CONDITIONAL, B, C, D); }

%type assignment_expr { Expression * }
%destructor assignment_expr { delete_expr(ctx, $$); }
assignment_expr(A) ::= conditional_expr(B). { A = B; }
assignment_expr(A) ::= unary_expr(B) ASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_ASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) MULASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_MULASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) DIVASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_DIVASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) MODASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_MODASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) ADDASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_ADDASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) SUBASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_SUBASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) LSHIFTASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_LSHIFTASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) RSHIFTASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_RSHIFTASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) ANDASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_ANDASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) XORASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_XORASSIGN, B, C); }
assignment_expr(A) ::= unary_expr(B) ORASSIGN assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_ORASSIGN, B, C); }

%type expression { Expression * }
%destructor expression { delete_expr(ctx, $$); }
expression(A) ::= assignment_expr(B). { A = B; }
expression(A) ::= expression(B) COMMA assignment_expr(C). { A = new_binary_expr(ctx, AST_OP_COMMA, B, C); }

// end of mojoshader_parser_hlsl.lemon ...