assembler: set the default source arg swizzle to the correct value.
/**
* MojoShader; generate shader programs from bytecode of compiled
* Direct3D shaders.
*
* Please see the file LICENSE.txt in the source's root directory.
*
* This file written by Ryan C. Gordon.
*/
#define __MOJOSHADER_INTERNAL__ 1
#include "mojoshader_profile.h"
#pragma GCC visibility push(hidden)
#if SUPPORT_PROFILE_ARB1
static inline const char *get_ARB1_register_string(Context *ctx,
const RegisterType regtype, const int regnum,
char *regnum_str, const size_t regnum_size)
{
// turns out these are identical at the moment.
return get_D3D_register_string(ctx,regtype,regnum,regnum_str,regnum_size);
} // get_ARB1_register_string
int allocate_scratch_register(Context *ctx)
{
const int retval = ctx->scratch_registers++;
if (retval >= ctx->max_scratch_registers)
ctx->max_scratch_registers = retval + 1;
return retval;
} // allocate_scratch_register
int allocate_branch_label(Context *ctx)
{
return ctx->assigned_branch_labels++;
} // allocate_branch_label
const char *allocate_ARB1_scratch_reg_name(Context *ctx, char *buf,
const size_t buflen)
{
const int scratch = allocate_scratch_register(ctx);
snprintf(buf, buflen, "scratch%d", scratch);
return buf;
} // allocate_ARB1_scratch_reg_name
static inline const char *get_ARB1_branch_label_name(Context *ctx, const int id,
char *buf, const size_t buflen)
{
snprintf(buf, buflen, "branch_label%d", id);
return buf;
} // get_ARB1_branch_label_name
const char *get_ARB1_varname_in_buf(Context *ctx, const RegisterType rt,
const int regnum, char *buf,
const size_t buflen)
{
// turns out these are identical at the moment.
return get_D3D_varname_in_buf(ctx, rt, regnum, buf, buflen);
} // get_ARB1_varname_in_buf
const char *get_ARB1_varname(Context *ctx, const RegisterType rt,
const int regnum)
{
// turns out these are identical at the moment.
return get_D3D_varname(ctx, rt, regnum);
} // get_ARB1_varname
static inline const char *get_ARB1_const_array_varname_in_buf(Context *ctx,
const int base, const int size,
char *buf, const size_t buflen)
{
snprintf(buf, buflen, "c_array_%d_%d", base, size);
return buf;
} // get_ARB1_const_array_varname_in_buf
const char *get_ARB1_const_array_varname(Context *ctx, int base, int size)
{
char buf[64];
get_ARB1_const_array_varname_in_buf(ctx, base, size, buf, sizeof (buf));
return StrDup(ctx, buf);
} // get_ARB1_const_array_varname
const char *make_ARB1_srcarg_string_in_buf(Context *ctx,
const SourceArgInfo *arg,
char *buf, size_t buflen)
{
// !!! FIXME: this can hit pathological cases where we look like this...
//
// dp3 r1.xyz, t0_bx2, t0_bx2
// mad r1.xyz, t0_bias, 1-r1, t0_bx2
//
// ...which do a lot of duplicate work in arb1...
//
// SUB scratch0, t0, { 0.5, 0.5, 0.5, 0.5 };
// MUL scratch0, scratch0, { 2.0, 2.0, 2.0, 2.0 };
// SUB scratch1, t0, { 0.5, 0.5, 0.5, 0.5 };
// MUL scratch1, scratch1, { 2.0, 2.0, 2.0, 2.0 };
// DP3 r1.xyz, scratch0, scratch1;
// SUB scratch0, t0, { 0.5, 0.5, 0.5, 0.5 };
// SUB scratch1, { 1.0, 1.0, 1.0, 1.0 }, r1;
// SUB scratch2, t0, { 0.5, 0.5, 0.5, 0.5 };
// MUL scratch2, scratch2, { 2.0, 2.0, 2.0, 2.0 };
// MAD r1.xyz, scratch0, scratch1, scratch2;
//
// ...notice that the dp3 calculates the same value into two scratch
// registers. This case is easier to handle; just see if multiple
// source args are identical, build it up once, and use the same
// scratch register for multiple arguments in that opcode.
// Even better still, only calculate things once across instructions,
// and be smart about letting it linger in a scratch register until we
// definitely don't need the calculation anymore. That's harder to
// write, though.
char regnum_str[16] = { '\0' };
// !!! FIXME: use get_ARB1_varname_in_buf() instead?
const char *regtype_str = NULL;
if (!arg->relative)
{
regtype_str = get_ARB1_register_string(ctx, arg->regtype,
arg->regnum, regnum_str,
sizeof (regnum_str));
} // if
const char *rel_lbracket = "";
char rel_offset[32] = { '\0' };
const char *rel_rbracket = "";
char rel_swizzle[4] = { '\0' };
const char *rel_regtype_str = "";
if (arg->relative)
{
rel_regtype_str = get_ARB1_varname_in_buf(ctx, arg->relative_regtype,
arg->relative_regnum,
(char *) alloca(64), 64);
rel_swizzle[0] = '.';
rel_swizzle[1] = swizzle_channels[arg->relative_component];
rel_swizzle[2] = '\0';
if (!support_nv2(ctx))
{
// The address register in ARB1 only allows the '.x' component, so
// we need to load the component we need from a temp vector
// register into .x as needed.
assert(arg->relative_regtype == REG_TYPE_ADDRESS);
assert(arg->relative_regnum == 0);
if (ctx->last_address_reg_component != arg->relative_component)
{
output_line(ctx, "ARL %s.x, addr%d.%c;", rel_regtype_str,
arg->relative_regnum,
swizzle_channels[arg->relative_component]);
ctx->last_address_reg_component = arg->relative_component;
} // if
rel_swizzle[1] = 'x';
} // if
if (arg->regtype == REG_TYPE_INPUT)
regtype_str = "vertex.attrib";
else
{
assert(arg->regtype == REG_TYPE_CONST);
const int arrayidx = arg->relative_array->index;
const int arraysize = arg->relative_array->count;
const int offset = arg->regnum - arrayidx;
assert(offset >= 0);
regtype_str = get_ARB1_const_array_varname_in_buf(ctx, arrayidx,
arraysize, (char *) alloca(64), 64);
if (offset != 0)
snprintf(rel_offset, sizeof (rel_offset), " + %d", offset);
} // else
rel_lbracket = "[";
rel_rbracket = "]";
} // if
// This is the source register with everything but swizzle and source mods.
snprintf(buf, buflen, "%s%s%s%s%s%s%s", regtype_str, regnum_str,
rel_lbracket, rel_regtype_str, rel_swizzle, rel_offset,
rel_rbracket);
// Some of the source mods need to generate instructions to a temp
// register, in which case we'll replace the register name.
const SourceMod mod = arg->src_mod;
const int inplace = ( (mod == SRCMOD_NONE) || (mod == SRCMOD_NEGATE) ||
((mod == SRCMOD_ABS) && support_nv2(ctx)) );
if (!inplace)
{
const size_t len = 64;
char *stackbuf = (char *) alloca(len);
regtype_str = allocate_ARB1_scratch_reg_name(ctx, stackbuf, len);
regnum_str[0] = '\0'; // move value to scratch register.
rel_lbracket = ""; // scratch register won't use array.
rel_rbracket = "";
rel_offset[0] = '\0';
rel_swizzle[0] = '\0';
rel_regtype_str = "";
} // if
const char *premod_str = "";
const char *postmod_str = "";
switch (mod)
{
case SRCMOD_NEGATE:
premod_str = "-";
break;
case SRCMOD_BIASNEGATE:
premod_str = "-";
// fall through.
case SRCMOD_BIAS:
output_line(ctx, "SUB %s, %s, { 0.5, 0.5, 0.5, 0.5 };",
regtype_str, buf);
break;
case SRCMOD_SIGNNEGATE:
premod_str = "-";
// fall through.
case SRCMOD_SIGN:
output_line(ctx,
"MAD %s, %s, { 2.0, 2.0, 2.0, 2.0 }, { -1.0, -1.0, -1.0, -1.0 };",
regtype_str, buf);
break;
case SRCMOD_COMPLEMENT:
output_line(ctx, "SUB %s, { 1.0, 1.0, 1.0, 1.0 }, %s;",
regtype_str, buf);
break;
case SRCMOD_X2NEGATE:
premod_str = "-";
// fall through.
case SRCMOD_X2:
output_line(ctx, "MUL %s, %s, { 2.0, 2.0, 2.0, 2.0 };",
regtype_str, buf);
break;
case SRCMOD_DZ:
fail(ctx, "SRCMOD_DZ currently unsupported in arb1");
postmod_str = "_dz";
break;
case SRCMOD_DW:
fail(ctx, "SRCMOD_DW currently unsupported in arb1");
postmod_str = "_dw";
break;
case SRCMOD_ABSNEGATE:
premod_str = "-";
// fall through.
case SRCMOD_ABS:
if (!support_nv2(ctx)) // GL_NV_vertex_program2_option adds this.
output_line(ctx, "ABS %s, %s;", regtype_str, buf);
else
{
premod_str = (mod == SRCMOD_ABSNEGATE) ? "-|" : "|";
postmod_str = "|";
} // else
break;
case SRCMOD_NOT:
fail(ctx, "SRCMOD_NOT currently unsupported in arb1");
premod_str = "!";
break;
case SRCMOD_NONE:
case SRCMOD_TOTAL:
break; // stop compiler whining.
} // switch
char swizzle_str[6];
size_t i = 0;
if (support_nv4(ctx)) // vFace must be output as "vFace.x" in nv4.
{
if (arg->regtype == REG_TYPE_MISCTYPE)
{
if ( ((const MiscTypeType) arg->regnum) == MISCTYPE_TYPE_FACE )
{
swizzle_str[i++] = '.';
swizzle_str[i++] = 'x';
} // if
} // if
} // if
const int scalar = isscalar(ctx, ctx->shader_type, arg->regtype, arg->regnum);
if (!scalar && !no_swizzle(arg->swizzle))
{
swizzle_str[i++] = '.';
// .xxxx is the same as .x, but .xx is illegal...scalar or full!
if (replicate_swizzle(arg->swizzle))
swizzle_str[i++] = swizzle_channels[arg->swizzle_x];
else
{
swizzle_str[i++] = swizzle_channels[arg->swizzle_x];
swizzle_str[i++] = swizzle_channels[arg->swizzle_y];
swizzle_str[i++] = swizzle_channels[arg->swizzle_z];
swizzle_str[i++] = swizzle_channels[arg->swizzle_w];
} // else
} // if
swizzle_str[i] = '\0';
assert(i < sizeof (swizzle_str));
snprintf(buf, buflen, "%s%s%s%s%s%s%s%s%s%s", premod_str,
regtype_str, regnum_str, rel_lbracket,
rel_regtype_str, rel_swizzle, rel_offset, rel_rbracket,
swizzle_str, postmod_str);
// !!! FIXME: make sure the scratch buffer was large enough.
return buf;
} // make_ARB1_srcarg_string_in_buf
const char *get_ARB1_destarg_varname(Context *ctx, char *buf,
const size_t buflen)
{
const DestArgInfo *arg = &ctx->dest_arg;
return get_ARB1_varname_in_buf(ctx, arg->regtype, arg->regnum, buf, buflen);
} // get_ARB1_destarg_varname
const char *get_ARB1_srcarg_varname(Context *ctx, const size_t idx,
char *buf, const size_t buflen)
{
if (idx >= STATICARRAYLEN(ctx->source_args))
{
fail(ctx, "Too many source args");
*buf = '\0';
return buf;
} // if
const SourceArgInfo *arg = &ctx->source_args[idx];
return get_ARB1_varname_in_buf(ctx, arg->regtype, arg->regnum, buf, buflen);
} // get_ARB1_srcarg_varname
const char *make_ARB1_destarg_string(Context *ctx, char *buf,
const size_t buflen)
{
const DestArgInfo *arg = &ctx->dest_arg;
*buf = '\0';
const char *sat_str = "";
if (arg->result_mod & MOD_SATURATE)
{
// nv4 can use ".SAT" in all program types.
// For less than nv4, the "_SAT" modifier is only available in
// fragment shaders. Every thing else will fake it later in
// emit_ARB1_dest_modifiers() ...
if (support_nv4(ctx))
sat_str = ".SAT";
else if (shader_is_pixel(ctx))
sat_str = "_SAT";
} // if
const char *pp_str = "";
if (arg->result_mod & MOD_PP)
{
// Most ARB1 profiles can't do partial precision (MOD_PP), but that's
// okay. The spec says lots of Direct3D implementations ignore the
// flag anyhow.
if (support_nv4(ctx))
pp_str = "H";
} // if
// CENTROID only allowed in DCL opcodes, which shouldn't come through here.
assert((arg->result_mod & MOD_CENTROID) == 0);
char regnum_str[16];
const char *regtype_str = get_ARB1_register_string(ctx, arg->regtype,
arg->regnum, regnum_str,
sizeof (regnum_str));
if (regtype_str == NULL)
{
fail(ctx, "Unknown destination register type.");
return buf;
} // if
char writemask_str[6];
size_t i = 0;
const int scalar = isscalar(ctx, ctx->shader_type, arg->regtype, arg->regnum);
if (!scalar && !writemask_xyzw(arg->writemask))
{
writemask_str[i++] = '.';
if (arg->writemask0) writemask_str[i++] = 'x';
if (arg->writemask1) writemask_str[i++] = 'y';
if (arg->writemask2) writemask_str[i++] = 'z';
if (arg->writemask3) writemask_str[i++] = 'w';
} // if
writemask_str[i] = '\0';
assert(i < sizeof (writemask_str));
//const char *pred_left = "";
//const char *pred_right = "";
char pred[32] = { '\0' };
if (ctx->predicated)
{
fail(ctx, "dest register predication currently unsupported in arb1");
return buf;
//pred_left = "(";
//pred_right = ") ";
make_ARB1_srcarg_string_in_buf(ctx, &ctx->predicate_arg,
pred, sizeof (pred));
} // if
snprintf(buf, buflen, "%s%s %s%s%s", pp_str, sat_str,
regtype_str, regnum_str, writemask_str);
// !!! FIXME: make sure the scratch buffer was large enough.
return buf;
} // make_ARB1_destarg_string
void emit_ARB1_dest_modifiers(Context *ctx)
{
const DestArgInfo *arg = &ctx->dest_arg;
if (arg->result_shift != 0x0)
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
const char *multiplier = NULL;
switch (arg->result_shift)
{
case 0x1: multiplier = "2.0"; break;
case 0x2: multiplier = "4.0"; break;
case 0x3: multiplier = "8.0"; break;
case 0xD: multiplier = "0.125"; break;
case 0xE: multiplier = "0.25"; break;
case 0xF: multiplier = "0.5"; break;
} // switch
if (multiplier != NULL)
{
char var[64]; get_ARB1_destarg_varname(ctx, var, sizeof (var));
output_line(ctx, "MUL%s, %s, %s;", dst, var, multiplier);
} // if
} // if
if (arg->result_mod & MOD_SATURATE)
{
// nv4 and/or pixel shaders just used the "SAT" modifier, instead.
if ( (!support_nv4(ctx)) && (!shader_is_pixel(ctx)) )
{
char var[64]; get_ARB1_destarg_varname(ctx, var, sizeof (var));
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
output_line(ctx, "MIN%s, %s, 1.0;", dst, var);
output_line(ctx, "MAX%s, %s, 0.0;", dst, var);
} // if
} // if
} // emit_ARB1_dest_modifiers
const char *make_ARB1_srcarg_string(Context *ctx, const size_t idx,
char *buf, const size_t buflen)
{
if (idx >= STATICARRAYLEN(ctx->source_args))
{
fail(ctx, "Too many source args");
*buf = '\0';
return buf;
} // if
const SourceArgInfo *arg = &ctx->source_args[idx];
return make_ARB1_srcarg_string_in_buf(ctx, arg, buf, buflen);
} // make_ARB1_srcarg_string
void emit_ARB1_opcode_ds(Context *ctx, const char *opcode)
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
output_line(ctx, "%s%s, %s;", opcode, dst, src0);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_opcode_ds
void emit_ARB1_opcode_dss(Context *ctx, const char *opcode)
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
output_line(ctx, "%s%s, %s, %s;", opcode, dst, src0, src1);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_opcode_dss
void emit_ARB1_opcode_dsss(Context *ctx, const char *opcode)
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
char src2[64]; make_ARB1_srcarg_string(ctx, 2, src2, sizeof (src2));
output_line(ctx, "%s%s, %s, %s, %s;", opcode, dst, src0, src1, src2);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_opcode_dsss
#define EMIT_ARB1_OPCODE_FUNC(op) \
void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_D_FUNC(op) \
void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_d(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_S_FUNC(op) \
void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_s(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_SS_FUNC(op) \
void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_ss(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_DS_FUNC(op) \
void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_ds(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_DSS_FUNC(op) \
void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_dss(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_DSSS_FUNC(op) \
void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_dsss(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_DSSSS_FUNC(op) \
void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_dssss(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(op) \
void emit_ARB1_##op(Context *ctx) { \
failf(ctx, #op " unimplemented in %s profile", ctx->profile->name); \
}
void emit_ARB1_start(Context *ctx, const char *profilestr)
{
const char *shader_str = NULL;
const char *shader_full_str = NULL;
if (shader_is_vertex(ctx))
{
shader_str = "vp";
shader_full_str = "vertex";
} // if
else if (shader_is_pixel(ctx))
{
shader_str = "fp";
shader_full_str = "fragment";
} // else if
else
{
failf(ctx, "Shader type %u unsupported in this profile.",
(uint) ctx->shader_type);
return;
} // if
set_output(ctx, &ctx->preflight);
if (strcmp(profilestr, MOJOSHADER_PROFILE_ARB1) == 0)
output_line(ctx, "!!ARB%s1.0", shader_str);
#if SUPPORT_PROFILE_ARB1_NV
else if (strcmp(profilestr, MOJOSHADER_PROFILE_NV2) == 0)
{
ctx->profile_supports_nv2 = 1;
output_line(ctx, "!!ARB%s1.0", shader_str);
output_line(ctx, "OPTION NV_%s_program2;", shader_full_str);
} // else if
else if (strcmp(profilestr, MOJOSHADER_PROFILE_NV3) == 0)
{
// there's no NV_fragment_program3, so just use 2.
const int ver = shader_is_pixel(ctx) ? 2 : 3;
ctx->profile_supports_nv2 = 1;
ctx->profile_supports_nv3 = 1;
output_line(ctx, "!!ARB%s1.0", shader_str);
output_line(ctx, "OPTION NV_%s_program%d;", shader_full_str, ver);
} // else if
else if (strcmp(profilestr, MOJOSHADER_PROFILE_NV4) == 0)
{
ctx->profile_supports_nv2 = 1;
ctx->profile_supports_nv3 = 1;
ctx->profile_supports_nv4 = 1;
output_line(ctx, "!!NV%s4.0", shader_str);
} // else if
#endif
else
{
failf(ctx, "Profile '%s' unsupported or unknown.", profilestr);
} // else
set_output(ctx, &ctx->mainline);
} // emit_ARB1_start
void emit_ARB1_end(Context *ctx)
{
// ps_1_* writes color to r0 instead oC0. We move it to the right place.
// We don't have to worry about a RET opcode messing this up, since
// RET isn't available before ps_2_0.
if (shader_is_pixel(ctx) && !shader_version_atleast(ctx, 2, 0))
{
set_used_register(ctx, REG_TYPE_COLOROUT, 0, 1);
output_line(ctx, "MOV oC0, r0;");
} // if
output_line(ctx, "END");
} // emit_ARB1_end
void emit_ARB1_phase(Context *ctx)
{
// no-op in arb1.
} // emit_ARB1_phase
static inline const char *arb1_float_temp(const Context *ctx)
{
// nv4 lets you specify data type.
return (support_nv4(ctx)) ? "FLOAT TEMP" : "TEMP";
} // arb1_float_temp
void emit_ARB1_finalize(Context *ctx)
{
push_output(ctx, &ctx->preflight);
if (shader_is_vertex(ctx) && !ctx->arb1_wrote_position)
output_line(ctx, "OPTION ARB_position_invariant;");
if (shader_is_pixel(ctx) && ctx->have_multi_color_outputs)
output_line(ctx, "OPTION ARB_draw_buffers;");
pop_output(ctx);
const char *tmpstr = arb1_float_temp(ctx);
int i;
push_output(ctx, &ctx->globals);
for (i = 0; i < ctx->max_scratch_registers; i++)
{
char buf[64];
allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
output_line(ctx, "%s %s;", tmpstr, buf);
} // for
// nv2 fragment programs (and anything nv4) have a real REP/ENDREP.
if ( (support_nv2(ctx)) && (!shader_is_pixel(ctx)) && (!support_nv4(ctx)) )
{
// set up temps for nv2 REP/ENDREP emulation through branching.
for (i = 0; i < ctx->max_reps; i++)
output_line(ctx, "TEMP rep%d;", i);
} // if
pop_output(ctx);
assert(ctx->scratch_registers == ctx->max_scratch_registers);
} // emit_ARB1_finalize
void emit_ARB1_global(Context *ctx, RegisterType regtype, int regnum)
{
// !!! FIXME: dependency on ARB1 profile. // !!! FIXME about FIXME: huh?
char varname[64];
get_ARB1_varname_in_buf(ctx, regtype, regnum, varname, sizeof (varname));
push_output(ctx, &ctx->globals);
switch (regtype)
{
case REG_TYPE_ADDRESS:
if (shader_is_pixel(ctx)) // actually REG_TYPE_TEXTURE.
{
// We have to map texture registers to temps for ps_1_1, since
// they work like temps, initialize with tex coords, and the
// ps_1_1 TEX opcode expects to overwrite it.
if (!shader_version_atleast(ctx, 1, 4))
{
output_line(ctx, "%s %s;", arb1_float_temp(ctx), varname);
push_output(ctx, &ctx->mainline_top);
output_line(ctx, "MOV %s, fragment.texcoord[%d];",
varname, regnum);
pop_output(ctx);
} // if
break;
} // if
// nv4 replaced address registers with generic int registers.
if (support_nv4(ctx))
output_line(ctx, "INT TEMP %s;", varname);
else
{
// nv2 has four-component address already, but stock arb1 has
// to emulate it in a temporary, and move components to the
// scalar ADDRESS register on demand.
output_line(ctx, "ADDRESS %s;", varname);
if (!support_nv2(ctx))
output_line(ctx, "TEMP addr%d;", regnum);
} // else
break;
//case REG_TYPE_PREDICATE:
// output_line(ctx, "bvec4 %s;", varname);
// break;
case REG_TYPE_TEMP:
output_line(ctx, "%s %s;", arb1_float_temp(ctx), varname);
break;
//case REG_TYPE_LOOP:
// break; // no-op. We declare these in for loops at the moment.
//case REG_TYPE_LABEL:
// break; // no-op. If we see it here, it means we optimized it out.
default:
fail(ctx, "BUG: we used a register we don't know how to define.");
break;
} // switch
pop_output(ctx);
} // emit_ARB1_global
void emit_ARB1_array(Context *ctx, VariableList *var)
{
// All uniforms are now packed tightly into the program.local array,
// instead of trying to map them to the d3d registers. So this needs to
// map to the next piece of the array we haven't used yet. Thankfully,
// arb1 lets you make a PARAM array that maps to a subset of another
// array; we don't need to do offsets, since myarray[0] can map to
// program.local[5] without any extra math from us.
const int base = var->index;
const int size = var->count;
const int arb1base = ctx->uniform_float4_count +
ctx->uniform_int4_count +
ctx->uniform_bool_count;
char varname[64];
get_ARB1_const_array_varname_in_buf(ctx, base, size, varname, sizeof (varname));
push_output(ctx, &ctx->globals);
output_line(ctx, "PARAM %s[%d] = { program.local[%d..%d] };", varname,
size, arb1base, (arb1base + size) - 1);
pop_output(ctx);
var->emit_position = arb1base;
} // emit_ARB1_array
void emit_ARB1_const_array(Context *ctx, const ConstantsList *clist,
int base, int size)
{
char varname[64];
get_ARB1_const_array_varname_in_buf(ctx, base, size, varname, sizeof (varname));
int i;
push_output(ctx, &ctx->globals);
output_line(ctx, "PARAM %s[%d] = {", varname, size);
ctx->indent++;
for (i = 0; i < size; i++)
{
while (clist->constant.type != MOJOSHADER_UNIFORM_FLOAT)
clist = clist->next;
assert(clist->constant.index == (base + i));
char val0[32];
char val1[32];
char val2[32];
char val3[32];
floatstr(ctx, val0, sizeof (val0), clist->constant.value.f[0], 1);
floatstr(ctx, val1, sizeof (val1), clist->constant.value.f[1], 1);
floatstr(ctx, val2, sizeof (val2), clist->constant.value.f[2], 1);
floatstr(ctx, val3, sizeof (val3), clist->constant.value.f[3], 1);
output_line(ctx, "{ %s, %s, %s, %s }%s", val0, val1, val2, val3,
(i < (size-1)) ? "," : "");
clist = clist->next;
} // for
ctx->indent--;
output_line(ctx, "};");
pop_output(ctx);
} // emit_ARB1_const_array
void emit_ARB1_uniform(Context *ctx, RegisterType regtype, int regnum,
const VariableList *var)
{
// We pack these down into the program.local array, so if we only use
// register c439, it'll actually map to program.local[0]. This will
// prevent overflows when we actually have enough resources to run.
const char *arrayname = "program.local";
int index = 0;
char varname[64];
get_ARB1_varname_in_buf(ctx, regtype, regnum, varname, sizeof (varname));
push_output(ctx, &ctx->globals);
if (var == NULL)
{
// all types share one array (rather, all types convert to float4).
index = ctx->uniform_float4_count + ctx->uniform_int4_count +
ctx->uniform_bool_count;
} // if
else
{
const int arraybase = var->index;
if (var->constant)
{
const int arraysize = var->count;
arrayname = get_ARB1_const_array_varname_in_buf(ctx, arraybase,
arraysize, (char *) alloca(64), 64);
index = (regnum - arraybase);
} // if
else
{
assert(var->emit_position != -1);
index = (regnum - arraybase) + var->emit_position;
} // else
} // else
output_line(ctx, "PARAM %s = %s[%d];", varname, arrayname, index);
pop_output(ctx);
} // emit_ARB1_uniform
void emit_ARB1_sampler(Context *ctx,int stage,TextureType ttype,int tb)
{
// this is mostly a no-op...you don't predeclare samplers in arb1.
if (tb) // This sampler used a ps_1_1 TEXBEM opcode?
{
const int index = ctx->uniform_float4_count + ctx->uniform_int4_count +
ctx->uniform_bool_count;
char var[64];
get_ARB1_varname_in_buf(ctx, REG_TYPE_SAMPLER, stage, var, sizeof(var));
push_output(ctx, &ctx->globals);
output_line(ctx, "PARAM %s_texbem = program.local[%d];", var, index);
output_line(ctx, "PARAM %s_texbeml = program.local[%d];", var, index+1);
pop_output(ctx);
ctx->uniform_float4_count += 2;
} // if
} // emit_ARB1_sampler
// !!! FIXME: a lot of cut-and-paste here from emit_GLSL_attribute().
void emit_ARB1_attribute(Context *ctx, RegisterType regtype, int regnum,
MOJOSHADER_usage usage, int index, int wmask,
int flags)
{
// !!! FIXME: this function doesn't deal with write masks at all yet!
const char *usage_str = NULL;
const char *arrayleft = "";
const char *arrayright = "";
char index_str[16] = { '\0' };
char varname[64];
get_ARB1_varname_in_buf(ctx, regtype, regnum, varname, sizeof (varname));
//assert((flags & MOD_PP) == 0); // !!! FIXME: is PP allowed?
if (index != 0) // !!! FIXME: a lot of these MUST be zero.
snprintf(index_str, sizeof (index_str), "%u", (uint) index);
if (shader_is_vertex(ctx))
{
// pre-vs3 output registers.
// these don't ever happen in DCL opcodes, I think. Map to vs_3_*
// output registers.
if (!shader_version_atleast(ctx, 3, 0))
{
if (regtype == REG_TYPE_RASTOUT)
{
regtype = REG_TYPE_OUTPUT;
index = regnum;
switch ((const RastOutType) regnum)
{
case RASTOUT_TYPE_POSITION:
usage = MOJOSHADER_USAGE_POSITION;
break;
case RASTOUT_TYPE_FOG:
usage = MOJOSHADER_USAGE_FOG;
break;
case RASTOUT_TYPE_POINT_SIZE:
usage = MOJOSHADER_USAGE_POINTSIZE;
break;
} // switch
} // if
else if (regtype == REG_TYPE_ATTROUT)
{
regtype = REG_TYPE_OUTPUT;
usage = MOJOSHADER_USAGE_COLOR;
index = regnum;
} // else if
else if (regtype == REG_TYPE_TEXCRDOUT)
{
regtype = REG_TYPE_OUTPUT;
usage = MOJOSHADER_USAGE_TEXCOORD;
index = regnum;
} // else if
} // if
// to avoid limitations of various GL entry points for input
// attributes (glSecondaryColorPointer() can only take 3 component
// items, glVertexPointer() can't do GL_UNSIGNED_BYTE, many other
// issues), we set up all inputs as generic vertex attributes, so we
// can pass data in just about any form, and ignore the built-in GLSL
// attributes like gl_SecondaryColor. Output needs to use the the
// built-ins, though, but we don't have to worry about the GL entry
// point limitations there.
if (regtype == REG_TYPE_INPUT)
{
const int attr = ctx->assigned_vertex_attributes++;
push_output(ctx, &ctx->globals);
output_line(ctx, "ATTRIB %s = vertex.attrib[%d];", varname, attr);
pop_output(ctx);
} // if
else if (regtype == REG_TYPE_OUTPUT)
{
switch (usage)
{
case MOJOSHADER_USAGE_POSITION:
ctx->arb1_wrote_position = 1;
usage_str = "result.position";
break;
case MOJOSHADER_USAGE_POINTSIZE:
usage_str = "result.pointsize";
break;
case MOJOSHADER_USAGE_COLOR:
index_str[0] = '\0'; // no explicit number.
if (index == 0)
usage_str = "result.color.primary";
else if (index == 1)
usage_str = "result.color.secondary";
break;
case MOJOSHADER_USAGE_FOG:
usage_str = "result.fogcoord";
break;
case MOJOSHADER_USAGE_TEXCOORD:
snprintf(index_str, sizeof (index_str), "%u", (uint) index);
usage_str = "result.texcoord";
arrayleft = "[";
arrayright = "]";
break;
default:
// !!! FIXME: we need to deal with some more built-in varyings here.
break;
} // switch
// !!! FIXME: the #define is a little hacky, but it means we don't
// !!! FIXME: have to track these separately if this works.
push_output(ctx, &ctx->globals);
// no mapping to built-in var? Just make it a regular global, pray.
if (usage_str == NULL)
output_line(ctx, "%s %s;", arb1_float_temp(ctx), varname);
else
{
output_line(ctx, "OUTPUT %s = %s%s%s%s;", varname, usage_str,
arrayleft, index_str, arrayright);
} // else
pop_output(ctx);
} // else if
else
{
fail(ctx, "unknown vertex shader attribute register");
} // else
} // if
else if (shader_is_pixel(ctx))
{
const char *paramtype_str = "ATTRIB";
// samplers DCLs get handled in emit_ARB1_sampler().
if (flags & MOD_CENTROID)
{
if (!support_nv4(ctx)) // GL_NV_fragment_program4 adds centroid.
{
// !!! FIXME: should we just wing it without centroid here?
failf(ctx, "centroid unsupported in %s profile",
ctx->profile->name);
return;
} // if
paramtype_str = "CENTROID ATTRIB";
} // if
if (regtype == REG_TYPE_COLOROUT)
{
paramtype_str = "OUTPUT";
usage_str = "result.color";
if (ctx->have_multi_color_outputs)
{
// We have to gamble that you have GL_ARB_draw_buffers.
// You probably do at this point if you have a sane setup.
snprintf(index_str, sizeof (index_str), "%u", (uint) regnum);
arrayleft = "[";
arrayright = "]";
} // if
} // if
else if (regtype == REG_TYPE_DEPTHOUT)
{
paramtype_str = "OUTPUT";
usage_str = "result.depth";
} // else if
// !!! FIXME: can you actualy have a texture register with COLOR usage?
else if ((regtype == REG_TYPE_TEXTURE) || (regtype == REG_TYPE_INPUT))
{
if (usage == MOJOSHADER_USAGE_TEXCOORD)
{
// ps_1_1 does a different hack for this attribute.
// Refer to emit_ARB1_global()'s REG_TYPE_TEXTURE code.
if (shader_version_atleast(ctx, 1, 4))
{
snprintf(index_str, sizeof (index_str), "%u", (uint) index);
usage_str = "fragment.texcoord";
arrayleft = "[";
arrayright = "]";
} // if
} // if
else if (usage == MOJOSHADER_USAGE_COLOR)
{
index_str[0] = '\0'; // no explicit number.
if (index == 0)
usage_str = "fragment.color.primary";
else if (index == 1)
usage_str = "fragment.color.secondary";
else
fail(ctx, "unsupported color index");
} // else if
} // else if
else if (regtype == REG_TYPE_MISCTYPE)
{
const MiscTypeType mt = (MiscTypeType) regnum;
if (mt == MISCTYPE_TYPE_FACE)
{
if (support_nv4(ctx)) // FINALLY, a vFace equivalent in nv4!
{
index_str[0] = '\0'; // no explicit number.
usage_str = "fragment.facing";
} // if
else
{
failf(ctx, "vFace unsupported in %s profile",
ctx->profile->name);
} // else
} // if
else if (mt == MISCTYPE_TYPE_POSITION)
{
index_str[0] = '\0'; // no explicit number.
usage_str = "fragment.position"; // !!! FIXME: is this the same coord space as D3D?
} // else if
else
{
fail(ctx, "BUG: unhandled misc register");
} // else
} // else if
else
{
fail(ctx, "unknown pixel shader attribute register");
} // else
if (usage_str != NULL)
{
push_output(ctx, &ctx->globals);
output_line(ctx, "%s %s = %s%s%s%s;", paramtype_str, varname,
usage_str, arrayleft, index_str, arrayright);
pop_output(ctx);
} // if
} // else if
else
{
fail(ctx, "Unknown shader type"); // state machine should catch this.
} // else
} // emit_ARB1_attribute
void emit_ARB1_RESERVED(Context *ctx) { /* no-op. */ }
void emit_ARB1_NOP(Context *ctx)
{
// There is no NOP in arb1. Just don't output anything here.
} // emit_ARB1_NOP
EMIT_ARB1_OPCODE_DS_FUNC(MOV)
EMIT_ARB1_OPCODE_DSS_FUNC(ADD)
EMIT_ARB1_OPCODE_DSS_FUNC(SUB)
EMIT_ARB1_OPCODE_DSSS_FUNC(MAD)
EMIT_ARB1_OPCODE_DSS_FUNC(MUL)
EMIT_ARB1_OPCODE_DS_FUNC(RCP)
void emit_ARB1_RSQ(Context *ctx)
{
// nv4 doesn't force abs() on this, so negative values will generate NaN.
// The spec says you should force the abs() yourself.
if (!support_nv4(ctx))
{
emit_ARB1_opcode_ds(ctx, "RSQ"); // pre-nv4 implies ABS.
return;
} // if
// we can optimize this to use nv2's |abs| construct in some cases.
if ( (ctx->source_args[0].src_mod == SRCMOD_NONE) ||
(ctx->source_args[0].src_mod == SRCMOD_NEGATE) ||
(ctx->source_args[0].src_mod == SRCMOD_ABSNEGATE) )
ctx->source_args[0].src_mod = SRCMOD_ABS;
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
if (ctx->source_args[0].src_mod == SRCMOD_ABS)
output_line(ctx, "RSQ%s, %s;", dst, src0);
else
{
char buf[64]; allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
output_line(ctx, "ABS %s, %s;", buf, src0);
output_line(ctx, "RSQ%s, %s.x;", dst, buf);
} // else
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_RSQ
EMIT_ARB1_OPCODE_DSS_FUNC(DP3)
EMIT_ARB1_OPCODE_DSS_FUNC(DP4)
EMIT_ARB1_OPCODE_DSS_FUNC(MIN)
EMIT_ARB1_OPCODE_DSS_FUNC(MAX)
EMIT_ARB1_OPCODE_DSS_FUNC(SLT)
EMIT_ARB1_OPCODE_DSS_FUNC(SGE)
void emit_ARB1_EXP(Context *ctx) { emit_ARB1_opcode_ds(ctx, "EX2"); }
static void arb1_log(Context *ctx, const char *opcode)
{
// !!! FIXME: SRCMOD_NEGATE can be made into SRCMOD_ABS here, too
// we can optimize this to use nv2's |abs| construct in some cases.
if ( (ctx->source_args[0].src_mod == SRCMOD_NONE) ||
(ctx->source_args[0].src_mod == SRCMOD_ABSNEGATE) )
ctx->source_args[0].src_mod = SRCMOD_ABS;
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
if (ctx->source_args[0].src_mod == SRCMOD_ABS)
output_line(ctx, "%s%s, %s;", opcode, dst, src0);
else
{
char buf[64]; allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
output_line(ctx, "ABS %s, %s;", buf, src0);
output_line(ctx, "%s%s, %s.x;", opcode, dst, buf);
} // else
emit_ARB1_dest_modifiers(ctx);
} // arb1_log
void emit_ARB1_LOG(Context *ctx)
{
arb1_log(ctx, "LG2");
} // emit_ARB1_LOG
EMIT_ARB1_OPCODE_DS_FUNC(LIT)
EMIT_ARB1_OPCODE_DSS_FUNC(DST)
void emit_ARB1_LRP(Context *ctx)
{
if (shader_is_pixel(ctx)) // fragment shaders have a matching LRP opcode.
emit_ARB1_opcode_dsss(ctx, "LRP");
else
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
char src2[64]; make_ARB1_srcarg_string(ctx, 2, src2, sizeof (src2));
char buf[64]; allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
// LRP is: dest = src2 + src0 * (src1 - src2)
output_line(ctx, "SUB %s, %s, %s;", buf, src1, src2);
output_line(ctx, "MAD%s, %s, %s, %s;", dst, buf, src0, src2);
emit_ARB1_dest_modifiers(ctx);
} // else
} // emit_ARB1_LRP
EMIT_ARB1_OPCODE_DS_FUNC(FRC)
static void arb1_MxXy(Context *ctx, const int x, const int y)
{
DestArgInfo *dstarg = &ctx->dest_arg;
const int origmask = dstarg->writemask;
char src0[64];
int i;
make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
for (i = 0; i < y; i++)
{
char dst[64];
char row[64];
make_ARB1_srcarg_string(ctx, i + 1, row, sizeof (row));
set_dstarg_writemask(dstarg, 1 << i);
make_ARB1_destarg_string(ctx, dst, sizeof (dst));
output_line(ctx, "DP%d%s, %s, %s;", x, dst, src0, row);
} // for
set_dstarg_writemask(dstarg, origmask);
emit_ARB1_dest_modifiers(ctx);
} // arb1_MxXy
void emit_ARB1_M4X4(Context *ctx) { arb1_MxXy(ctx, 4, 4); }
void emit_ARB1_M4X3(Context *ctx) { arb1_MxXy(ctx, 4, 3); }
void emit_ARB1_M3X4(Context *ctx) { arb1_MxXy(ctx, 3, 4); }
void emit_ARB1_M3X3(Context *ctx) { arb1_MxXy(ctx, 3, 3); }
void emit_ARB1_M3X2(Context *ctx) { arb1_MxXy(ctx, 3, 2); }
void emit_ARB1_CALL(Context *ctx)
{
if (!support_nv2(ctx)) // no branching in stock ARB1.
{
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
return;
} // if
char labelstr[64];
get_ARB1_srcarg_varname(ctx, 0, labelstr, sizeof (labelstr));
output_line(ctx, "CAL %s;", labelstr);
} // emit_ARB1_CALL
void emit_ARB1_CALLNZ(Context *ctx)
{
// !!! FIXME: if src1 is a constbool that's true, we can remove the
// !!! FIXME: if. If it's false, we can make this a no-op.
if (!support_nv2(ctx)) // no branching in stock ARB1.
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
else
{
// !!! FIXME: double-check this.
char labelstr[64];
char scratch[64];
char src1[64];
get_ARB1_srcarg_varname(ctx, 0, labelstr, sizeof (labelstr));
get_ARB1_srcarg_varname(ctx, 1, src1, sizeof (src1));
allocate_ARB1_scratch_reg_name(ctx, scratch, sizeof (scratch));
output_line(ctx, "MOVC %s, %s;", scratch, src1);
output_line(ctx, "CAL %s (NE.x);", labelstr);
} // else
} // emit_ARB1_CALLNZ
// !!! FIXME: needs BRA in nv2, LOOP in nv2 fragment progs, and REP in nv4.
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(LOOP)
void emit_ARB1_RET(Context *ctx)
{
// don't fail() if no nv2...maybe we're just ending the mainline?
// if we're ending a LABEL that had no CALL, this would all be written
// to ctx->ignore anyhow, so this should be "safe" ... arb1 profile will
// just end up throwing all this code out.
if (support_nv2(ctx)) // no branching in stock ARB1.
output_line(ctx, "RET;");
set_output(ctx, &ctx->mainline); // in case we were ignoring this function.
} // emit_ARB1_RET
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(ENDLOOP)
void emit_ARB1_LABEL(Context *ctx)
{
if (!support_nv2(ctx)) // no branching in stock ARB1.
return; // don't fail()...maybe we never use it, but do fail in CALL.
const int label = ctx->source_args[0].regnum;
RegisterList *reg = reglist_find(&ctx->used_registers, REG_TYPE_LABEL, label);
// MSDN specs say CALL* has to come before the LABEL, so we know if we
// can ditch the entire function here as unused.
if (reg == NULL)
set_output(ctx, &ctx->ignore); // Func not used. Parse, but don't output.
// !!! FIXME: it would be nice if we could determine if a function is
// !!! FIXME: only called once and, if so, forcibly inline it.
//const char *uses_loopreg = ((reg) && (reg->misc == 1)) ? "int aL" : "";
char labelstr[64];
get_ARB1_srcarg_varname(ctx, 0, labelstr, sizeof (labelstr));
output_line(ctx, "%s:", labelstr);
} // emit_ARB1_LABEL
void emit_ARB1_POW(Context *ctx)
{
// we can optimize this to use nv2's |abs| construct in some cases.
if ( (ctx->source_args[0].src_mod == SRCMOD_NONE) ||
(ctx->source_args[0].src_mod == SRCMOD_ABSNEGATE) )
ctx->source_args[0].src_mod = SRCMOD_ABS;
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
if (ctx->source_args[0].src_mod == SRCMOD_ABS)
output_line(ctx, "POW%s, %s, %s;", dst, src0, src1);
else
{
char buf[64]; allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
output_line(ctx, "ABS %s, %s;", buf, src0);
output_line(ctx, "POW%s, %s.x, %s;", dst, buf, src1);
} // else
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_POW
void emit_ARB1_CRS(Context *ctx) { emit_ARB1_opcode_dss(ctx, "XPD"); }
void emit_ARB1_SGN(Context *ctx)
{
if (support_nv2(ctx))
emit_ARB1_opcode_ds(ctx, "SSG");
else
{
char dst[64];
char src0[64];
char scratch1[64];
char scratch2[64];
make_ARB1_destarg_string(ctx, dst, sizeof (dst));
make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
allocate_ARB1_scratch_reg_name(ctx, scratch1, sizeof (scratch1));
allocate_ARB1_scratch_reg_name(ctx, scratch2, sizeof (scratch2));
output_line(ctx, "SLT %s, %s, 0.0;", scratch1, src0);
output_line(ctx, "SLT %s, -%s, 0.0;", scratch2, src0);
output_line(ctx, "ADD%s -%s, %s;", dst, scratch1, scratch2);
emit_ARB1_dest_modifiers(ctx);
} // else
} // emit_ARB1_SGN
EMIT_ARB1_OPCODE_DS_FUNC(ABS)
void emit_ARB1_NRM(Context *ctx)
{
// nv2 fragment programs (and anything nv4) have a real NRM.
if ( (support_nv4(ctx)) || ((support_nv2(ctx)) && (shader_is_pixel(ctx))) )
emit_ARB1_opcode_ds(ctx, "NRM");
else
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char buf[64]; allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
output_line(ctx, "DP3 %s.w, %s, %s;", buf, src0, src0);
output_line(ctx, "RSQ %s.w, %s.w;", buf, buf);
output_line(ctx, "MUL%s, %s.w, %s;", dst, buf, src0);
emit_ARB1_dest_modifiers(ctx);
} // else
} // emit_ARB1_NRM
void emit_ARB1_SINCOS(Context *ctx)
{
// we don't care about the temp registers that <= sm2 demands; ignore them.
const int mask = ctx->dest_arg.writemask;
// arb1 fragment programs and everything nv4 have sin/cos/sincos opcodes.
if ((shader_is_pixel(ctx)) || (support_nv4(ctx)))
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
if (writemask_x(mask))
output_line(ctx, "COS%s, %s;", dst, src0);
else if (writemask_y(mask))
output_line(ctx, "SIN%s, %s;", dst, src0);
else if (writemask_xy(mask))
output_line(ctx, "SCS%s, %s;", dst, src0);
} // if
// nv2+ profiles have sin and cos opcodes.
else if (support_nv2(ctx))
{
char dst[64]; get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
if (writemask_x(mask))
output_line(ctx, "COS %s.x, %s;", dst, src0);
else if (writemask_y(mask))
output_line(ctx, "SIN %s.y, %s;", dst, src0);
else if (writemask_xy(mask))
{
output_line(ctx, "SIN %s.x, %s;", dst, src0);
output_line(ctx, "COS %s.y, %s;", dst, src0);
} // else if
} // if
else // big nasty.
{
char dst[64]; get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
char src0[64]; get_ARB1_srcarg_varname(ctx, 0, src0, sizeof (src0));
const int need_sin = (writemask_x(mask) || writemask_xy(mask));
const int need_cos = (writemask_y(mask) || writemask_xy(mask));
char scratch[64];
if (need_sin || need_cos)
allocate_ARB1_scratch_reg_name(ctx, scratch, sizeof (scratch));
// These sin() and cos() approximations originally found here:
// http://www.devmaster.net/forums/showthread.php?t=5784
//
// const float B = 4.0f / M_PI;
// const float C = -4.0f / (M_PI * M_PI);
// float y = B * x + C * x * fabs(x);
//
// // optional better precision...
// const float P = 0.225f;
// y = P * (y * fabs(y) - y) + y;
//
//
// That first thing can be reduced to:
// const float y = ((1.2732395447351626861510701069801f * x) +
// ((-0.40528473456935108577551785283891f * x) * fabs(x)));
if (need_sin)
{
// !!! FIXME: use SRCMOD_ABS here?
output_line(ctx, "ABS %s.x, %s.x;", dst, src0);
output_line(ctx, "MUL %s.x, %s.x, -0.40528473456935108577551785283891;", dst, dst);
output_line(ctx, "MUL %s.x, %s.x, 1.2732395447351626861510701069801;", scratch, src0);
output_line(ctx, "MAD %s.x, %s.x, %s.x, %s.x;", dst, dst, src0, scratch);
} // if
// cosine is sin(x + M_PI/2), but you have to wrap x to pi:
// if (x+(M_PI/2) > M_PI)
// x -= 2 * M_PI;
//
// which is...
// if (x+(1.57079637050628662109375) > 3.1415927410125732421875)
// x += -6.283185482025146484375;
if (need_cos)
{
output_line(ctx, "ADD %s.x, %s.x, 1.57079637050628662109375;", scratch, src0);
output_line(ctx, "SGE %s.y, %s.x, 3.1415927410125732421875;", scratch, scratch);
output_line(ctx, "MAD %s.x, %s.y, -6.283185482025146484375, %s.x;", scratch, scratch, scratch);
output_line(ctx, "ABS %s.x, %s.x;", dst, src0);
output_line(ctx, "MUL %s.x, %s.x, -0.40528473456935108577551785283891;", dst, dst);
output_line(ctx, "MUL %s.x, %s.x, 1.2732395447351626861510701069801;", scratch, src0);
output_line(ctx, "MAD %s.y, %s.x, %s.x, %s.x;", dst, dst, src0, scratch);
} // if
} // else
// !!! FIXME: might not have done anything. Don't emit if we didn't.
if (!(ctx->isfail))
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_SINCOS
void emit_ARB1_REP(Context *ctx)
{
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
// nv2 fragment programs (and everything nv4) have a real REP.
if ( (support_nv4(ctx)) || ((support_nv2(ctx)) && (shader_is_pixel(ctx))) )
output_line(ctx, "REP %s;", src0);
else if (support_nv2(ctx))
{
// no REP, but we can use branches.
char failbranch[32];
char topbranch[32];
const int toplabel = allocate_branch_label(ctx);
const int faillabel = allocate_branch_label(ctx);
get_ARB1_branch_label_name(ctx,faillabel,failbranch,sizeof(failbranch));
get_ARB1_branch_label_name(ctx,toplabel,topbranch,sizeof(topbranch));
assert(((size_t) ctx->branch_labels_stack_index) <
STATICARRAYLEN(ctx->branch_labels_stack)-1);
ctx->branch_labels_stack[ctx->branch_labels_stack_index++] = toplabel;
ctx->branch_labels_stack[ctx->branch_labels_stack_index++] = faillabel;
char scratch[32];
snprintf(scratch, sizeof (scratch), "rep%d", ctx->reps);
output_line(ctx, "MOVC %s.x, %s;", scratch, src0);
output_line(ctx, "BRA %s (LE.x);", failbranch);
output_line(ctx, "%s:", topbranch);
} // else if
else // stock ARB1 has no branching.
{
fail(ctx, "branching unsupported in this profile");
} // else
} // emit_ARB1_REP
void emit_ARB1_ENDREP(Context *ctx)
{
// nv2 fragment programs (and everything nv4) have a real ENDREP.
if ( (support_nv4(ctx)) || ((support_nv2(ctx)) && (shader_is_pixel(ctx))) )
output_line(ctx, "ENDREP;");
else if (support_nv2(ctx))
{
// no ENDREP, but we can use branches.
assert(ctx->branch_labels_stack_index >= 2);
char failbranch[32];
char topbranch[32];
const int faillabel = ctx->branch_labels_stack[--ctx->branch_labels_stack_index];
const int toplabel = ctx->branch_labels_stack[--ctx->branch_labels_stack_index];
get_ARB1_branch_label_name(ctx,faillabel,failbranch,sizeof(failbranch));
get_ARB1_branch_label_name(ctx,toplabel,topbranch,sizeof(topbranch));
char scratch[32];
snprintf(scratch, sizeof (scratch), "rep%d", ctx->reps);
output_line(ctx, "SUBC %s.x, %s.x, 1.0;", scratch, scratch);
output_line(ctx, "BRA %s (GT.x);", topbranch);
output_line(ctx, "%s:", failbranch);
} // else if
else // stock ARB1 has no branching.
{
fail(ctx, "branching unsupported in this profile");
} // else
} // emit_ARB1_ENDREP
void nv2_if(Context *ctx)
{
// The condition code register MUST be set up before this!
// nv2 fragment programs (and everything nv4) have a real IF.
if ( (support_nv4(ctx)) || (shader_is_pixel(ctx)) )
output_line(ctx, "IF EQ.x;");
else
{
// there's no IF construct, but we can use a branch to a label.
char failbranch[32];
const int label = allocate_branch_label(ctx);
get_ARB1_branch_label_name(ctx, label, failbranch, sizeof (failbranch));
assert(((size_t) ctx->branch_labels_stack_index)
< STATICARRAYLEN(ctx->branch_labels_stack));
ctx->branch_labels_stack[ctx->branch_labels_stack_index++] = label;
// !!! FIXME: should this be NE? (EQ would jump to the ELSE for the IF condition, right?).
output_line(ctx, "BRA %s (EQ.x);", failbranch);
} // else
} // nv2_if
void emit_ARB1_IF(Context *ctx)
{
if (support_nv2(ctx))
{
char buf[64]; allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
char src0[64]; get_ARB1_srcarg_varname(ctx, 0, src0, sizeof (src0));
output_line(ctx, "MOVC %s.x, %s;", buf, src0);
nv2_if(ctx);
} // if
else // stock ARB1 has no branching.
{
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
} // else
} // emit_ARB1_IF
void emit_ARB1_ELSE(Context *ctx)
{
// nv2 fragment programs (and everything nv4) have a real ELSE.
if ( (support_nv4(ctx)) || ((support_nv2(ctx)) && (shader_is_pixel(ctx))) )
output_line(ctx, "ELSE;");
else if (support_nv2(ctx))
{
// there's no ELSE construct, but we can use a branch to a label.
assert(ctx->branch_labels_stack_index > 0);
// At the end of the IF block, unconditionally jump to the ENDIF.
const int endlabel = allocate_branch_label(ctx);
char endbranch[32];
get_ARB1_branch_label_name(ctx,endlabel,endbranch,sizeof (endbranch));
output_line(ctx, "BRA %s;", endbranch);
// Now mark the ELSE section with a lable.
const int elselabel = ctx->branch_labels_stack[ctx->branch_labels_stack_index-1];
char elsebranch[32];
get_ARB1_branch_label_name(ctx,elselabel,elsebranch,sizeof(elsebranch));
output_line(ctx, "%s:", elsebranch);
// Replace the ELSE label with the ENDIF on the label stack.
ctx->branch_labels_stack[ctx->branch_labels_stack_index-1] = endlabel;
} // else if
else // stock ARB1 has no branching.
{
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
} // else
} // emit_ARB1_ELSE
void emit_ARB1_ENDIF(Context *ctx)
{
// nv2 fragment programs (and everything nv4) have a real ENDIF.
if ( (support_nv4(ctx)) || ((support_nv2(ctx)) && (shader_is_pixel(ctx))) )
output_line(ctx, "ENDIF;");
else if (support_nv2(ctx))
{
// there's no ENDIF construct, but we can use a branch to a label.
assert(ctx->branch_labels_stack_index > 0);
const int endlabel = ctx->branch_labels_stack[--ctx->branch_labels_stack_index];
char endbranch[32];
get_ARB1_branch_label_name(ctx,endlabel,endbranch,sizeof (endbranch));
output_line(ctx, "%s:", endbranch);
} // if
else // stock ARB1 has no branching.
{
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
} // else
} // emit_ARB1_ENDIF
void emit_ARB1_BREAK(Context *ctx)
{
// nv2 fragment programs (and everything nv4) have a real BREAK.
if ( (support_nv4(ctx)) || ((support_nv2(ctx)) && (shader_is_pixel(ctx))) )
output_line(ctx, "BRK;");
else if (support_nv2(ctx))
{
// no BREAK, but we can use branches.
assert(ctx->branch_labels_stack_index >= 2);
const int faillabel = ctx->branch_labels_stack[ctx->branch_labels_stack_index];
char failbranch[32];
get_ARB1_branch_label_name(ctx,faillabel,failbranch,sizeof(failbranch));
output_line(ctx, "BRA %s;", failbranch);
} // else if
else // stock ARB1 has no branching.
{
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
} // else
} // emit_ARB1_BREAK
void emit_ARB1_MOVA(Context *ctx)
{
// nv2 and nv3 can use the ARR opcode.
// But nv4 removed ARR (and ADDRESS registers!). Just ROUND to an INT.
if (support_nv4(ctx))
emit_ARB1_opcode_ds(ctx, "ROUND.S"); // !!! FIXME: don't use a modifier here.
else if ((support_nv2(ctx)) || (support_nv3(ctx)))
emit_ARB1_opcode_ds(ctx, "ARR");
else
{
char src0[64];
char scratch[64];
char addr[32];
make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
allocate_ARB1_scratch_reg_name(ctx, scratch, sizeof (scratch));
snprintf(addr, sizeof (addr), "addr%d", ctx->dest_arg.regnum);
// !!! FIXME: we can optimize this if src_mod is ABS or ABSNEGATE.
// ARL uses floor(), but D3D expects round-to-nearest.
// There is probably a more efficient way to do this.
if (shader_is_pixel(ctx)) // CMP only exists in fragment programs. :/
output_line(ctx, "CMP %s, %s, -1.0, 1.0;", scratch, src0);
else
{
output_line(ctx, "SLT %s, %s, 0.0;", scratch, src0);
output_line(ctx, "MAD %s, %s, -2.0, 1.0;", scratch, scratch);
} // else
output_line(ctx, "ABS %s, %s;", addr, src0);
output_line(ctx, "ADD %s, %s, 0.5;", addr, addr);
output_line(ctx, "FLR %s, %s;", addr, addr);
output_line(ctx, "MUL %s, %s, %s;", addr, addr, scratch);
// we don't handle these right now, since emit_ARB1_dest_modifiers(ctx)
// wants to look at dest_arg, not our temp register.
assert(ctx->dest_arg.result_mod == 0);
assert(ctx->dest_arg.result_shift == 0);
// we assign to the actual address register as needed.
ctx->last_address_reg_component = -1;
} // else
} // emit_ARB1_MOVA
void emit_ARB1_TEXKILL(Context *ctx)
{
// d3d kills on xyz, arb1 kills on xyzw. Fix the swizzle.
// We just map the x component to w. If it's negative, the fragment
// would discard anyhow, otherwise, it'll pass through okay. This saves
// us a temp register.
char dst[64];
get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
output_line(ctx, "KIL %s.xyzx;", dst);
} // emit_ARB1_TEXKILL
static void arb1_texbem(Context *ctx, const int luminance)
{
// !!! FIXME: this code counts on the register not having swizzles, etc.
const int stage = ctx->dest_arg.regnum;
char dst[64]; get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
char src[64]; get_ARB1_srcarg_varname(ctx, 0, src, sizeof (src));
char tmp[64]; allocate_ARB1_scratch_reg_name(ctx, tmp, sizeof (tmp));
char sampler[64];
get_ARB1_varname_in_buf(ctx, REG_TYPE_SAMPLER, stage,
sampler, sizeof (sampler));
output_line(ctx, "MUL %s, %s_texbem.xzyw, %s.xyxy;", tmp, sampler, src);
output_line(ctx, "ADD %s.xy, %s.xzxx, %s.ywxx;", tmp, tmp, tmp);
output_line(ctx, "ADD %s.xy, %s, %s;", tmp, tmp, dst);
output_line(ctx, "TEX %s, %s, texture[%d], 2D;", dst, tmp, stage);
if (luminance) // TEXBEML, not just TEXBEM?
{
output_line(ctx, "MAD %s, %s.zzzz, %s_texbeml.xxxx, %s_texbeml.yyyy;",
tmp, src, sampler, sampler);
output_line(ctx, "MUL %s, %s, %s;", dst, dst, tmp);
} // if
emit_ARB1_dest_modifiers(ctx);
} // arb1_texbem
void emit_ARB1_TEXBEM(Context *ctx)
{
arb1_texbem(ctx, 0);
} // emit_ARB1_TEXBEM
void emit_ARB1_TEXBEML(Context *ctx)
{
arb1_texbem(ctx, 1);
} // emit_ARB1_TEXBEML
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXREG2AR)
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXREG2GB)
void emit_ARB1_TEXM3X2PAD(Context *ctx)
{
// no-op ... work happens in emit_ARB1_TEXM3X2TEX().
} // emit_ARB1_TEXM3X2PAD
void emit_ARB1_TEXM3X2TEX(Context *ctx)
{
if (ctx->texm3x2pad_src0 == -1)
return;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
// !!! FIXME: this code counts on the register not having swizzles, etc.
const int stage = ctx->dest_arg.regnum;
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x2pad_src0,
src0, sizeof (src0));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x2pad_dst0,
src1, sizeof (src1));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src2, sizeof (src2));
get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
output_line(ctx, "DP3 %s.y, %s, %s;", dst, src2, dst);
output_line(ctx, "DP3 %s.x, %s, %s;", dst, src0, src1);
output_line(ctx, "TEX %s, %s, texture[%d], 2D;", dst, dst, stage);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_TEXM3X2TEX
void emit_ARB1_TEXM3X3PAD(Context *ctx)
{
// no-op ... work happens in emit_ARB1_TEXM3X3*().
} // emit_ARB1_TEXM3X3PAD
void emit_ARB1_TEXM3X3TEX(Context *ctx)
{
if (ctx->texm3x3pad_src1 == -1)
return;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char src3[64];
char src4[64];
// !!! FIXME: this code counts on the register not having swizzles, etc.
const int stage = ctx->dest_arg.regnum;
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst0,
src0, sizeof (src0));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src0,
src1, sizeof (src1));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst1,
src2, sizeof (src2));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src1,
src3, sizeof (src3));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src4, sizeof (src4));
get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER, stage);
const TextureType ttype = (TextureType) (sreg ? sreg->index : 0);
const char *ttypestr = (ttype == TEXTURE_TYPE_CUBE) ? "CUBE" : "3D";
output_line(ctx, "DP3 %s.z, %s, %s;", dst, dst, src4);
output_line(ctx, "DP3 %s.x, %s, %s;", dst, src0, src1);
output_line(ctx, "DP3 %s.y, %s, %s;", dst, src2, src3);
output_line(ctx, "TEX %s, %s, texture[%d], %s;", dst, dst, stage, ttypestr);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_TEXM3X3TEX
void emit_ARB1_TEXM3X3SPEC(Context *ctx)
{
if (ctx->texm3x3pad_src1 == -1)
return;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char src3[64];
char src4[64];
char src5[64];
char tmp[64];
char tmp2[64];
// !!! FIXME: this code counts on the register not having swizzles, etc.
const int stage = ctx->dest_arg.regnum;
allocate_ARB1_scratch_reg_name(ctx, tmp, sizeof (tmp));
allocate_ARB1_scratch_reg_name(ctx, tmp2, sizeof (tmp2));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst0,
src0, sizeof (src0));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src0,
src1, sizeof (src1));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst1,
src2, sizeof (src2));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src1,
src3, sizeof (src3));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src4, sizeof (src4));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[1].regnum,
src5, sizeof (src5));
get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER, stage);
const TextureType ttype = (TextureType) (sreg ? sreg->index : 0);
const char *ttypestr = (ttype == TEXTURE_TYPE_CUBE) ? "CUBE" : "3D";
output_line(ctx, "DP3 %s.z, %s, %s;", dst, dst, src4);
output_line(ctx, "DP3 %s.x, %s, %s;", dst, src0, src1);
output_line(ctx, "DP3 %s.y, %s, %s;", dst, src2, src3);
output_line(ctx, "MUL %s, %s, %s;", tmp, dst, dst); // normal * normal
output_line(ctx, "MUL %s, %s, %s;", tmp2, dst, src5); // normal * eyeray
// !!! FIXME: This is goofy. There's got to be a way to do vector-wide
// !!! FIXME: divides or reciprocals...right?
output_line(ctx, "RCP %s.x, %s.x;", tmp2, tmp2);
output_line(ctx, "RCP %s.y, %s.y;", tmp2, tmp2);
output_line(ctx, "RCP %s.z, %s.z;", tmp2, tmp2);
output_line(ctx, "RCP %s.w, %s.w;", tmp2, tmp2);
output_line(ctx, "MUL %s, %s, %s;", tmp, tmp, tmp2);
output_line(ctx, "MUL %s, %s, { 2.0, 2.0, 2.0, 2.0 };", tmp, tmp);
output_line(ctx, "MAD %s, %s, %s, -%s;", tmp, tmp, dst, src5);
output_line(ctx, "TEX %s, %s, texture[%d], %s;", dst, tmp, stage, ttypestr);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_TEXM3X3SPEC
void emit_ARB1_TEXM3X3VSPEC(Context *ctx)
{
if (ctx->texm3x3pad_src1 == -1)
return;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char src3[64];
char src4[64];
char tmp[64];
char tmp2[64];
char tmp3[64];
// !!! FIXME: this code counts on the register not having swizzles, etc.
const int stage = ctx->dest_arg.regnum;
allocate_ARB1_scratch_reg_name(ctx, tmp, sizeof (tmp));
allocate_ARB1_scratch_reg_name(ctx, tmp2, sizeof (tmp2));
allocate_ARB1_scratch_reg_name(ctx, tmp3, sizeof (tmp3));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst0,
src0, sizeof (src0));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src0,
src1, sizeof (src1));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst1,
src2, sizeof (src2));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src1,
src3, sizeof (src3));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src4, sizeof (src4));
get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER, stage);
const TextureType ttype = (TextureType) (sreg ? sreg->index : 0);
const char *ttypestr = (ttype == TEXTURE_TYPE_CUBE) ? "CUBE" : "3D";
output_line(ctx, "MOV %s.x, %s.w;", tmp3, src0);
output_line(ctx, "MOV %s.y, %s.w;", tmp3, src2);
output_line(ctx, "MOV %s.z, %s.w;", tmp3, dst);
output_line(ctx, "DP3 %s.z, %s, %s;", dst, dst, src4);
output_line(ctx, "DP3 %s.x, %s, %s;", dst, src0, src1);
output_line(ctx, "DP3 %s.y, %s, %s;", dst, src2, src3);
output_line(ctx, "MUL %s, %s, %s;", tmp, dst, dst); // normal * normal
output_line(ctx, "MUL %s, %s, %s;", tmp2, dst, tmp3); // normal * eyeray
// !!! FIXME: This is goofy. There's got to be a way to do vector-wide
// !!! FIXME: divides or reciprocals...right?
output_line(ctx, "RCP %s.x, %s.x;", tmp2, tmp2);
output_line(ctx, "RCP %s.y, %s.y;", tmp2, tmp2);
output_line(ctx, "RCP %s.z, %s.z;", tmp2, tmp2);
output_line(ctx, "RCP %s.w, %s.w;", tmp2, tmp2);
output_line(ctx, "MUL %s, %s, %s;", tmp, tmp, tmp2);
output_line(ctx, "MUL %s, %s, { 2.0, 2.0, 2.0, 2.0 };", tmp, tmp);
output_line(ctx, "MAD %s, %s, %s, -%s;", tmp, tmp, dst, tmp3);
output_line(ctx, "TEX %s, %s, texture[%d], %s;", dst, tmp, stage, ttypestr);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_TEXM3X3VSPEC
void emit_ARB1_EXPP(Context *ctx) { emit_ARB1_opcode_ds(ctx, "EX2"); }
void emit_ARB1_LOGP(Context *ctx) { arb1_log(ctx, "LG2"); }
void emit_ARB1_CND(Context *ctx)
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
char src2[64]; make_ARB1_srcarg_string(ctx, 2, src2, sizeof (src2));
char tmp[64]; allocate_ARB1_scratch_reg_name(ctx, tmp, sizeof (tmp));
// CND compares against 0.5, but we need to compare against 0.0...
// ...subtract to make up the difference.
output_line(ctx, "SUB %s, %s, { 0.5, 0.5, 0.5, 0.5 };", tmp, src0);
// D3D tests (src0 >= 0.0), but ARB1 tests (src0 < 0.0) ... so just
// switch src1 and src2 to get the same results.
output_line(ctx, "CMP%s, %s, %s, %s;", dst, tmp, src2, src1);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_CND
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXREG2RGB)
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXDP3TEX)
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXM3X2DEPTH)
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXDP3)
void emit_ARB1_TEXM3X3(Context *ctx)
{
if (ctx->texm3x3pad_src1 == -1)
return;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char src3[64];
char src4[64];
// !!! FIXME: this code counts on the register not having swizzles, etc.
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst0,
src0, sizeof (src0));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src0,
src1, sizeof (src1));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst1,
src2, sizeof (src2));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src1,
src3, sizeof (src3));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src4, sizeof (src4));
get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
output_line(ctx, "DP3 %s.z, %s, %s;", dst, dst, src4);
output_line(ctx, "DP3 %s.x, %s, %s;", dst, src0, src1);
output_line(ctx, "DP3 %s.y, %s, %s;", dst, src2, src3);
output_line(ctx, "MOV %s.w, { 1.0, 1.0, 1.0, 1.0 };", dst);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_TEXM3X3
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXDEPTH)
void emit_ARB1_CMP(Context *ctx)
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
char src2[64]; make_ARB1_srcarg_string(ctx, 2, src2, sizeof (src2));
// D3D tests (src0 >= 0.0), but ARB1 tests (src0 < 0.0) ... so just
// switch src1 and src2 to get the same results.
output_line(ctx, "CMP%s, %s, %s, %s;", dst, src0, src2, src1);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_CMP
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(BEM)
void emit_ARB1_DP2ADD(Context *ctx)
{
if (support_nv4(ctx)) // nv4 has a built-in equivalent to DP2ADD.
emit_ARB1_opcode_dsss(ctx, "DP2A");
else
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
char src2[64]; make_ARB1_srcarg_string(ctx, 2, src2, sizeof (src2));
char scratch[64];
// DP2ADD is:
// dst = (src0.r * src1.r) + (src0.g * src1.g) + src2.replicate_swiz
allocate_ARB1_scratch_reg_name(ctx, scratch, sizeof (scratch));
output_line(ctx, "MUL %s, %s, %s;", scratch, src0, src1);
output_line(ctx, "ADD %s, %s.x, %s.y;", scratch, scratch, scratch);
output_line(ctx, "ADD%s, %s.x, %s;", dst, scratch, src2);
emit_ARB1_dest_modifiers(ctx);
} // else
} // emit_ARB1_DP2ADD
void emit_ARB1_DSX(Context *ctx)
{
if (support_nv2(ctx)) // nv2 has a built-in equivalent to DSX.
emit_ARB1_opcode_ds(ctx, "DDX");
else
failf(ctx, "DSX unsupported in %s profile", ctx->profile->name);
} // emit_ARB1_DSX
void emit_ARB1_DSY(Context *ctx)
{
if (support_nv2(ctx)) // nv2 has a built-in equivalent to DSY.
emit_ARB1_opcode_ds(ctx, "DDY");
else
failf(ctx, "DSY unsupported in %s profile", ctx->profile->name);
} // emit_ARB1_DSY
static void arb1_texld(Context *ctx, const char *opcode, const int texldd)
{
// !!! FIXME: Hack: "TEXH" is invalid in nv4. Fix this more cleanly.
if ((ctx->dest_arg.result_mod & MOD_PP) && (support_nv4(ctx)))
ctx->dest_arg.result_mod &= ~MOD_PP;
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
const int sm1 = !shader_version_atleast(ctx, 1, 4);
const int regnum = sm1 ? ctx->dest_arg.regnum : ctx->source_args[1].regnum;
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER, regnum);
const char *ttype = NULL;
char src0[64];
if (sm1)
get_ARB1_destarg_varname(ctx, src0, sizeof (src0));
else
get_ARB1_srcarg_varname(ctx, 0, src0, sizeof (src0));
//char src1[64]; get_ARB1_srcarg_varname(ctx, 1, src1, sizeof (src1)); // !!! FIXME: SRC_MOD?
char src2[64] = { 0 };
char src3[64] = { 0 };
if (texldd)
{
make_ARB1_srcarg_string(ctx, 2, src2, sizeof (src2));
make_ARB1_srcarg_string(ctx, 3, src3, sizeof (src3));
} // if
// !!! FIXME: this should be in state_TEXLD, not in the arb1/glsl emitters.
if (sreg == NULL)
{
fail(ctx, "TEXLD using undeclared sampler");
return;
} // if
// SM1 only specifies dst, so don't check swizzle there.
if ( !sm1 && (!no_swizzle(ctx->source_args[1].swizzle)) )
{
// !!! FIXME: does this ever actually happen?
fail(ctx, "BUG: can't handle TEXLD with sampler swizzle at the moment");
} // if
switch ((const TextureType) sreg->index)
{
case TEXTURE_TYPE_2D: ttype = "2D"; break; // !!! FIXME: "RECT"?
case TEXTURE_TYPE_CUBE: ttype = "CUBE"; break;
case TEXTURE_TYPE_VOLUME: ttype = "3D"; break;
default: fail(ctx, "unknown texture type"); return;
} // switch
if (texldd)
{
output_line(ctx, "%s%s, %s, %s, %s, texture[%d], %s;", opcode, dst,
src0, src2, src3, regnum, ttype);
} // if
else
{
output_line(ctx, "%s%s, %s, texture[%d], %s;", opcode, dst, src0,
regnum, ttype);
} // else
} // arb1_texld
void emit_ARB1_TEXLDD(Context *ctx)
{
// With GL_NV_fragment_program2, we can use the TXD opcode.
// In stock arb1, we can settle for a standard texld, which isn't
// perfect, but oh well.
if (support_nv2(ctx))
arb1_texld(ctx, "TXD", 1);
else
arb1_texld(ctx, "TEX", 0);
} // emit_ARB1_TEXLDD
void emit_ARB1_TEXLDL(Context *ctx)
{
if ((shader_is_vertex(ctx)) && (!support_nv3(ctx)))
{
failf(ctx, "Vertex shader TEXLDL unsupported in %s profile",
ctx->profile->name);
return;
} // if
else if ((shader_is_pixel(ctx)) && (!support_nv2(ctx)))
{
failf(ctx, "Pixel shader TEXLDL unsupported in %s profile",
ctx->profile->name);
return;
} // if
// !!! FIXME: this doesn't map exactly to TEXLDL. Review this.
arb1_texld(ctx, "TXL", 0);
} // emit_ARB1_TEXLDL
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(BREAKP)
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(BREAKC)
void emit_ARB1_IFC(Context *ctx)
{
if (support_nv2(ctx))
{
const char *comps[] = {
"", "SGTC", "SEQC", "SGEC", "SGTC", "SNEC", "SLEC"
};
if (ctx->instruction_controls >= STATICARRAYLEN(comps))
{
fail(ctx, "unknown comparison control");
return;
} // if
char src0[64];
char src1[64];
char scratch[64];
const char *comp = comps[ctx->instruction_controls];
get_ARB1_srcarg_varname(ctx, 0, src0, sizeof (src0));
get_ARB1_srcarg_varname(ctx, 1, src1, sizeof (src1));
allocate_ARB1_scratch_reg_name(ctx, scratch, sizeof (scratch));
output_line(ctx, "%s %s.x, %s, %s;", comp, scratch, src0, src1);
nv2_if(ctx);
} // if
else // stock ARB1 has no branching.
{
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
} // else
} // emit_ARB1_IFC
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(SETP)
void emit_ARB1_DEF(Context *ctx)
{
const float *val = (const float *) ctx->dwords; // !!! FIXME: could be int?
char dst[64]; get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
char val0[32]; floatstr(ctx, val0, sizeof (val0), val[0], 1);
char val1[32]; floatstr(ctx, val1, sizeof (val1), val[1], 1);
char val2[32]; floatstr(ctx, val2, sizeof (val2), val[2], 1);
char val3[32]; floatstr(ctx, val3, sizeof (val3), val[3], 1);
push_output(ctx, &ctx->globals);
output_line(ctx, "PARAM %s = { %s, %s, %s, %s };",
dst, val0, val1, val2, val3);
pop_output(ctx);
} // emit_ARB1_DEF
void emit_ARB1_DEFI(Context *ctx)
{
char dst[64]; get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
const int32 *x = (const int32 *) ctx->dwords;
push_output(ctx, &ctx->globals);
output_line(ctx, "PARAM %s = { %d, %d, %d, %d };",
dst, (int) x[0], (int) x[1], (int) x[2], (int) x[3]);
pop_output(ctx);
} // emit_ARB1_DEFI
void emit_ARB1_DEFB(Context *ctx)
{
char dst[64]; get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
push_output(ctx, &ctx->globals);
output_line(ctx, "PARAM %s = %d;", dst, ctx->dwords[0] ? 1 : 0);
pop_output(ctx);
} // emit_ARB1_DEFB
void emit_ARB1_DCL(Context *ctx)
{
// no-op. We do this in our emit_attribute() and emit_uniform().
} // emit_ARB1_DCL
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXCRD)
void emit_ARB1_TEXLD(Context *ctx)
{
if (!shader_version_atleast(ctx, 1, 4))
{
arb1_texld(ctx, "TEX", 0);
return;
} // if
else if (!shader_version_atleast(ctx, 2, 0))
{
// ps_1_4 is different, too!
fail(ctx, "TEXLD == Shader Model 1.4 unimplemented."); // !!! FIXME
return;
} // if
// !!! FIXME: do texldb and texldp map between OpenGL and D3D correctly?
if (ctx->instruction_controls == CONTROL_TEXLD)
arb1_texld(ctx, "TEX", 0);
else if (ctx->instruction_controls == CONTROL_TEXLDP)
arb1_texld(ctx, "TXP", 0);
else if (ctx->instruction_controls == CONTROL_TEXLDB)
arb1_texld(ctx, "TXB", 0);
} // emit_ARB1_TEXLD
#undef EMIT_ARB1_OPCODE_FUNC
#undef EMIT_ARB1_OPCODE_D_FUNC
#undef EMIT_ARB1_OPCODE_S_FUNC
#undef EMIT_ARB1_OPCODE_SS_FUNC
#undef EMIT_ARB1_OPCODE_DS_FUNC
#undef EMIT_ARB1_OPCODE_DSS_FUNC
#undef EMIT_ARB1_OPCODE_DSSS_FUNC
#undef EMIT_ARB1_OPCODE_DSSSS_FUNC
#undef EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC
#endif // SUPPORT_PROFILE_ARB1
#pragma GCC visibility pop